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Source of errors in climate models: subgrid effects

Small-scale waves produce a systematic forcing to the gener al circulation.

However, GCMs can not resolve all the spectrum of small-scal e waves.

How can we infer this systematic momentum deficit (missing fo rcing) in a

GCM?

It is not easy. If one computes the difference between the tru e state

(observation) and the GCM state, the result is a combination of different

source of errors, recent and past, which once they are genera ted are

advected and interact with other parts of the system.

1. Is there an objetive technique to determine the source of t he momentum

deficit, i.e., the exact time and position where the momentum error was

produced?

2. Can we use this information to improve parameterizations of small-scale

effects?
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Motivation

Observed temperature vs radiative temperature in the middl e atmosphere.

SP WP

Observed temperature for

January. Andrews, et al. 1987.

SP WP

Radiative temperature. Fels et

al. JGR85.
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What effect produces the inversion in the horizontal
temperature gradient?

What process cools the summer hemisphere and heats the winte r

hemisphere?
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Meridional circulation and the Coriolis torque

SP WP

Solomon, et al. 1986

The meridional circulation needed to

keep the observed temperature is

v ≈ 9m s−1.

This circulation produces a Coriolis

torque of

−fv = 70m s−1 day−1.

What force balances the Coriolis torque in the mesosphere?
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Small-scale gravity waves
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Gravity wave amplitude increases with height due to density decreasing. When a wave reaches the

instability threshold, starts to break generating turbulence.

Lindzen (1981) showed that if the wave amplitude is kept at the convective instability threshold:
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Small-scale gravity waves produce a nonreversible forcing to the mean flow.

In particular: the breaking of waves produce momentum flux divergence that forces the mean flow.
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Systematic gravity wave forcing

How can waves, that are statistically isotropic, produce a s ystematic forcing in

one direction?

Mean zonal wind at 45oS in

winter.

Mean zonal wind at 45oS in

summer.
Ans. Part of the wave spectrum is filtered by the mean zonal win d (Lindzen, 1981).

==> the breaking produces a positive zonal forcing (negative) i n the summer

hemisphere (winter) for an isotropic spectrum.
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What is the actual GW forcing in the atmosphere?

High vertical and horizontal resolution measurements of u and w + They

must be global. → Unachievable .

Alternative: an inverse technique .

Through the effects that GW forcing produces on the large-sc ale flow (i.e.

low-resolution large-scale observations ), we want to estimate the source

of this large-scale response.

Can we apply 4DVar concepts to estimate the missing force
due to the unresolved waves in a model?
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4DVar under perfect ignorance hypothesis

There is no background information (perfect ignorance), so the cost function

is defined as

J =
1

2

n
∑

i=1

(H[yi]− xi)
TR−1(H[yi]− xi)

where xi is the model state, yi are the observations. The state is given by

the model evolution
dx

dt
+M(x, t) = X

from t0 to ti, we have xi = F (x0,X, ti)

The model state is a function of the initial condition and also of the ’missing

forcing’. Then J = J(x0,X)

Therefore, if we know x0 the control space of the cost function is only the

field X. The minimum of the cost function gives the ’missing forcing’ (Pulido

and Thuburn, QJ 2005).

10



Middle atmosphere dynamical model, F (x0,X , ti)

The dynamical model is based on the fully nonlinear, hydrostatic primitive

equations, with an isentropic vertical coordinate and a hexagonal-icosahedral

horizontal grid (Thuburn 1994).

∂tσ +∇ · (σu) + ∂θ(σθ̇) = 0

∂t(σQ) +∇ · (σQu− k̂× θ̇∂θu) = Xζ

∂tδ+∇· [σQk̂×u+∇(Ψ+
u2

2
)+ θ̇∂θu] = Xδ

θt = H Horizontal

icosahedral grid.

The bottom boundary condition is set at p ≈ 100mb, where a time dependent

observational Montgomery potential is imposed.

A realistic parametrisation of radiative transfer is used (Shine 1987; Shine and

Rickaby 1989). GW scheme is switched off.
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4DVar implementation

Details of the implementation:

• The gradient of the cost function is calculated with the adjoint model. The full

adjoint model of the middle atmosphere dynamical model was developed.

• Augmented State. Initial condition + Forcing term.

• The initial condition is assumed to be known exactly.

• The missing forcing is assumed constant within an assimilation window.

• A conjugate gradient algorithm coupled with the secant method is used to

perform the minimization of the cost function.
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Twin experiments

Experiment:

• A Gaussian forcing is

used as the prescribed

forcing to generate “obser-

vation”.

• The adiabatic evolution

is started from resting con-

dition with an isothermal

atmosphere.

• The model evolution with
the prescribed forcing is
taken as the observation.
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Flow response. ’The observations’
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Flow response to the ap-

plied forcing at t =1 day.

Geostrophic adjustment.

This could be interpreted

as a crude budget calcula-

tion:

X = [uF (1d)−uH(1d)]/1d

uF (1d) is the evolution of the

model with the forcing term.

uH(1d) is the evolution of the

model without the forcing term.
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Estimated ’missing’ forcing with 4DVar
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Estimated forcing after 25

minimisation iterations.

Observations are:
σ∗(1d), Q∗(1d) and
δ∗(1d). So that

J =
∑

(δ − δ
∗)2 + σ

2(Q−Q
∗)2

+(τσ)−2(σ − σ
∗)2

The error in the forcing estimation is

smaller than 1 m/s/day (Pulido and

Thuburn QJ 2005).
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Is the response linear?

Cost function shape at the 10th

minimisation direction.

Derivative of the cost function

calculated with the adjoint model

and directly from the cost function.

The gradient of the cost function is approximatly linear in all the minimisation

directions.
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Convergence

Error as a function of minimisation iteration.

25 minimisation iterations are enough to find a good forcing estimate.

The rotational component of forcing is better estimated than divergence

component.
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Adjustment process

We assume an isothermal background state on an f-plane. Linearizing about a state of rest gives,

[(∂2
tt + f2)H+∇

2]∂t(σ
−1σ′) = −H[∂tXδ + fXζ ]

[(∂2
tt + f2)H +∇

2]∂tζ
′ = ∇

2Xζ +H[∂2
ttXζ − f∂tXδ]

[(∂2
tt + f2)H +∇

2]δ′ = H[∂tXδ + fXζ ]

where H = (gσ)−1∂θ(ρθ∂θ).

The solution can be expressed in Fourier components with the fields given by

(σ′/σ, ζ ′, δ′) = (σ̂(t)/σ, ζ̂(t), δ̂(t)) exp[i(kx+ ly) + (1/2H + im)z]

The solutions of the homogeneous equations are free inertia-gravity waves which satisfy the

dispersion relationship

ω2 = f2 +
(k2 + l2)N2

1/4H2 +m2

and a geostrophic mode of frequency, ω = 0.
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Solution of the adjustment process

The forced solution is

σ̂

σ
= −

f

ω2
X̂ζt−

X̂δ

ω2
[1− cos(ωt)] +

f

ω3
X̂ζ sin(ωt)

δ̂ =
fX̂ζ

ω2
[1− cos(ωt)] +

X̂δ

ω
sin(ωt)

ζ̂ =

(

1−
f2

ω2

)

X̂ζt−
fX̂δ

ω2
[1− cos(ωt)] +

f2

ω3
Xζ sin(ωt)

X̂ζ produces a geostrophically balanced growing anomaly in Q, ζ and σ, along with some

inertia-gravity waves in ζ and σ.

X̂δ produces steady ζ and σ anomalies along with some inertia-graity waves.

PV is given by:
Q = σ−1Xζt

Q is affected only by Xζ , not Xδ . Q does not have an IGW component.
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Limited observational information
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Experiment J(σ) with pre-

scribed forcing at midlati-

tudes (left panel) and at the

equator (right panel).

Shading contours are the

estimations and contours

are the errors.
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Actual estimations: Met Office analysis

Observations: Met Office middle atmosphere analyses.

Initial condition: for the first assimilation window of each month is taken from MO

analyses, for subsequent windows we use our analyses.

Data assimilation cycle with an optimal forcing.
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Actual estimations: Met Office analysis

Cost function: potential vorticity and pseudo-density (function of temperature only) are

used as observed variables which are taken from MO analyses.

Control space: Curl of forcing only.
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Estimated zonal mean monthly averaged zonal forcing.
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Bottom momentum flux: Sources?

-0.03  -0.01   0.01   0.03   0.05  
  

 

-0.05 -0.04 -0.03 -0.02 -0.01  0.00  0.01  0.02  0.03
  

 

Integrating forcing and

neglecting the top mo-

mentum flux:
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Pulido and Thuburn

(2008).

23



A further step: Parameter estimation

The estimated missing forcing should be reproduced by GW sch emes.

Can GW schemes with optimum parameters reproduce the
estimated missing forcing?

==> Offline estimation: We want to match the “observed” missing fi eld by

a GW scheme with some unknonwn parameters.
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Scinocca GW scheme

Scinocca (2002) scheme assumes the launch EP momentum flux spectrum is given by

E(c, zl) =
4E∗

πc2
∗

c

[

1 +

(

c

c∗

)4
]

−1

c∗ ≡
Nlλ∗

2π
is the characteristic phase speed and E∗ the total momentum flux.

The dissipation of the waves is activated when a component of the spectrum exceeds a

saturation threshold given by

Es(c, z) =
S∗E∗

c2
∗

ρ(z)Nl

ρlN(z)

[c− u(z)]2

c

The momentum flux that is eliminated and the forcing are given by

ET (z) = E∗ −

∫ cc

0

[E(c, zl)− Es(c, z)] dc X = ρ−1∂zET .

We consider as free parameters: (E∗, λ∗, S∗). The launch height zl is considered fixed.
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Optimum parameters: Variational data assimilation

The cost function is defined as: J = (x− y)T R−1 (x− y) where y is the observed

GWD profile and x = X(E∗, λ∗, S∗) is the forcing resulting from the GW scheme.

We applied the variational data assimilation technique similar to the forcing estimation

technique. The minimization is also performed by a conjugate gradient method. The

adjoint model of the scheme was developed.
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Optimum parameters: Genetic algorithm

A genetic algorithm developed in NCAR by Charbonneau and Knapp (1995) is used to

minimize the cost function.

• The minimization is perfomed in a constrained domain.

• We set the number of individuals in a population to 100 and the number of

generations to 200.

Experiments with different true parameters. Genetic algorithm (red) and hybrid

genetic-variational algorithm (green).
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Estimated parameters

Zonal wind and temperature is taken from Met Office analysis.

The GWD field estimated with the ASDE-4DVar technique (Pulido and Thuburn, JC

2008) for July 2002 is used as observational forcing profile y.

Parameters E∗ (left) λ∗ (middle) and S∗ (right) estimated for Met Office analysis in

July 2002. Pulido et al. QJ 2012.

Parameter λ∗ appears to agree in midlatitudes with measurements.
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Estimated and optimal forcing

Missing X
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Missing forcing (momentum flux divergence) from observatio ns and the estimated

forcing using GW Scinocca scheme with optimum parameters (r ight panel).



4DVar works really well to estimate GW forcing, however it is model dependent. If we

want to estimate the missing forcing in other models, full ad joint models of each

model has to be developed.

Ensemble-based data assimilation: Kalman filtering

This is a model independent technique so that it could be very useful for an

intercomparison project of the “missing forcing” in differ ent GCMs.



Estimation of parameters in a subgrid orographic scheme

Offline optimization of the subgrid orographic scheme (Lott 1998, operational in ECMWF,

LMD-Z).

In the twin experiments, ensemble Kalman filter fails to converge towards the known true

parameters. The parameter error covariance is unknown.

New proposed technique: EnKF + Maximum likelihood error covariance estimation. Tandeo,

Pulido and Lott (2012) in preparation.

The state, model parameters, is governed by a Gaussian random walk which is given by

xt(tk) = xt(tk−1) + ηk,
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Estimation of parameters in a subgrid orographic scheme

The observation eq is

yo
k = Hk

(

xt(tk)
)

+ ǫk.

where the observation operator Hk is the nonlinear function defined by

Hk

(

xt(tk)
)

= F
(

G
(

xt(tk)
)

,Zk

)

.

F is the orographic scheme. G maps the parameters to [−∞,∞]. Zk are the forcing fields

that change with time (e.g. winds).

EnKF −− > Implementation of Pham (2001).

Maximum likelihood error covariance estimation −− > Expectation-Maximization algorithm.
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Estimation of parameters in a subgrid orographic scheme
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Twin experiment for an offline estimation. Blue (EM Iteration 1), Red (EM it=10) Black (EM

it=50).
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Should parameters be changed when model resolution is chang ed?
The resolution of models is often being changed when computer power increases.

Are the “optimal” parameters in one model configuration still optimal for other configuration?

The orographic scheme, F , changes with model resolution changes, i.e. the representation

of mountain-ridge orientation, anisotropy and elevation of the subgrid orography change.

Assuming that the “observations”, i.e. small-scale momentum flux divergence, remain the

same when the resolution is changed; the EnKF-EM technique can be used to determine

the optimal parameters in the higher resolution.



Parameter optimization when model resolution is increased
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Conclusions

Estimating the source of missing momentum:

• Variational data assimilation may be used to estimate the mi ssing force

for a given climate model.

• The 4DVar technique appears to give robust results with very good

convergence.

• It is able to estimate the ’launch’ momentum flux

Estimating parameters of GW schemes:

• Variational data assimilation needs a good first guess for es timating

parameters of physical parameterizations, since the sensi tivity far from

the minimum is usually nonlinear.

• A genetic algorithm works well for this low dimension proble m.

• Ensemble Kalman filtering also needs a good a priori knowledg e to

converge. EM may be used to estimate the statistical paramet ers.
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