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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical/dynamical knowledge about a system,

provides an estimate of its state

The main fields of applications in geophysics are:

initialize weather prediction

produce reanalysis

parameter estimation
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Data Assimilation - DA overview

Data Assimilation is the entire sequence of operations that, starting from the observations and

possibly from a statistical/dynamical knowledge about a system, provides an estimate of its state

In the last decades the accuracy of initial conditions has improved:
observational network has been enlarged and refined (a major contribution came from
remote sensing measurements)
there has been a flourishing of data assimilation techniques aimed at a flow dependent
description of the forecast error (KF-like algorithms, Monte Carlo and Deterministic
filters, AUS, 4DVar, ...)
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Treatment of Model Error in DA

controlling errors: what about model error ?

In the past, model error has been considered small with respect to the (growth of) initial
condition error, and thus often neglected

Nowadays model error is recognized as a main source of uncertainty in NWP, seasonal and
climate prediction
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Treatment of Model Error in DA

controlling errors: what about model error ?

In the past, model error has been considered small with respect to the (growth of) initial
condition error, and thus often neglected

Nowadays model error is recognized as a main source of uncertainty in NWP, seasonal and
climate prediction

Fundamental problems making difficult an adequate treatment of model error in data
assimilation:

large variety of possible error sources (incorrect parametrizations of physical processes,
numerical discretizations, unresolved scales, etc..)

the amount of available data insufficient to realistically describe the model error statistics

lack of a general framework for model error dynamics

OBJECTIVES

1 Identifying some general laws for the evolution of the model error dynamics (with suitable
application-oriented approximations)

2 Use of these dynamical laws to prescribe the model error statistics required by DA
algorithms
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Treatment of Model Error in DA Formulation

The posing of the problem

Let assume to have the model:

dx(t)

dt
= f (x, λ)

used to describe the true process:

d x̂(t)

dt
= f̂ (x̂, ŷ, λ

′
) + ǫĝ(x̂, ŷ, λ

′
)

d ŷ(t)

dt
= ĥ(x̂, ŷ, λ

′
)

ĝ(x̂, ŷ, λ
′

) represents the dynamics associated to extra processes not
accounted for by the model;

ĥ(x̂, ŷ, λ
′

) - unresolved scale
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Treatment of Model Error in DA Formulation

CASE I - Parametric Error

the model resolves all the relevant scales ⇒ ĥ = 0 and f = f̂

error in the parameter δλ 6= 0

set ǫ = γδλ

Estimation error evolution in the linear approximation

δx(t) ≈ Mt,t0δx0 +

∫ t

t0

dτMt,τ δµ(τ) = δxic(t) + δxm(t)

where

δµ = [
∂f

∂λ
|λ + γg(y(t), λ

′

)]δλ
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Treatment of Model Error in DA Formulation

CASE I - Parametric Error

the model resolves all the relevant scales ⇒ ĥ = 0 and f = f̂

error in the parameter δλ 6= 0

set ǫ = γδλ

Estimation error evolution in the linear approximation

δx(t) ≈ Mt,t0δx0 +

∫ t

t0

dτMt,τ δµ(τ) = δxic(t) + δxm(t)

where

δµ = [
∂f

∂λ
|λ + γg(y(t), λ

′

)]δλ

The model error acts as a deterministic process

The important factor controlling the evolution is δµ(t)

In view of the presence of the propagator M, the flow instabilities are
expected to influence the model error dynamics
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Treatment of Model Error in DA Formulation

Model error covariance and correlation - CASE I

Model error covariance

Pm(t) =

∫ t

t0

dτ

∫ t

t0

dτ
′
Mt,τ < (δµ(τ))(δµ(τ

′
))T ) > MT

t,τ ′
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Model error covariance and correlation - CASE I

Model error covariance

Pm(t) =

∫ t

t0

dτ

∫ t
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dτ
′
Mt,τ < (δµ(τ))(δµ(τ

′
))T ) > MT

t,τ ′

Model error correlation

Pm(t1, t2) =

∫ t1

t0

dτ

∫ t2

t0

dτ
′
Mt1,τ < δµ(τ)δµ(τ

′
)T > MT

t2,τ
′

These covariance and correlations are exactly what we need in DA !

These equations are NOT suitable for realistic geophysical
applications - Some approximation is required
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Treatment of Model Error in DA Formulation

Short time approximation - CASE I

Model error covariance

Pm(t) ≈< δµ0δµ
T
0 > (t − t0)

2
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Treatment of Model Error in DA Formulation

Short time approximation - CASE I

Model error covariance

Pm(t) ≈< δµ0δµ
T
0 > (t − t0)

2

Model error correlation

Pm(t1, t2) ≈< δµ0δµ
T
0 > (t1 − t0)(t2 − t0)

The model error covariance and correlation evolve quadratically in the short-time.

The main factor determining this evolution is the covariance of δµ at t = t0,
Q =< δµ0δµ

T
0 >.

The covariance Q embeds the information on the model error through δλ and the
functional dependence of the dynamics on the parameters.
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Treatment of Model Error in DA Formulation

Short time approximation - CASE I

Model error covariance

Pm(t) ≈< δµ0δµ
T
0 > (t − t0)

2

Model error correlation

Pm(t1, t2) ≈< δµ0δµ
T
0 > (t1 − t0)(t2 − t0)

The model error covariance and correlation evolve quadratically in the short-time.

The main factor determining this evolution is the covariance of δµ at t = t0,
Q =< δµ0δµ

T
0 >.

The covariance Q embeds the information on the model error through δλ and the
functional dependence of the dynamics on the parameters.

Once Q is known, Pm can be computed at any time within the short time regime
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Treatment of Model Error in DA Formulation

CASE II - Error due to unresolved scales

the model does not describe the scale given by ĥ(x̂, ŷ, λ
′

)

assume correct parameter, δλ = 0, and set ǫ = 0

Estimation error evolution in the resolved scale

δx(t) = x(t)− x̂(t) = δx0 +

∫ t

t0

dτ(f (x, λ)− f̂ (x̂, ŷ, λ))
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Evolution of the estimation error covariance in the resolved scale

P(t) =< δx0δx
T
0 > +

∫ t

t0

dτ

∫ t

t0

dτ
′
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Treatment of Model Error in DA Formulation

CASE II - Error due to unresolved scales

the model does not describe the scale given by ĥ(x̂, ŷ, λ
′

)

assume correct parameter, δλ = 0, and set ǫ = 0

Estimation error evolution in the resolved scale

δx(t) = x(t)− x̂(t) = δx0 +

∫ t

t0

dτ(f (x, λ)− f̂ (x̂, ŷ, λ))

Evolution of the estimation error covariance in the resolved scale

P(t) =< δx0δx
T
0 > +

∫ t

t0

dτ

∫ t

t0

dτ
′

< [f (x, λ)−f̂ (x̂, ŷ, λ)][f (x, λ)−f̂ (x̂, ŷ, λ)]T >

the correlation between i.c. and model error neglected (standard hyp. in DA)

the important factor controlling the evolution is the difference between the
velocity fields f (x, λ)− f̂ (x̂, ŷ, λ)
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Treatment of Model Error in DA Formulation

Short Time Approximation - CASE II

the contribution f (x, λ)− f̂ (x̂, ŷ, λ) is treated as a deterministic process

the short time evolution of P(t) reads:

P(t) ≈< δx0δx
T
0 > + < [f (x, λ)− f̂ (x̂, ŷ, λ)][f (x, λ)− f̂ (x̂, ŷ, λ)]T > t2 + O(3)
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Accounting for model error in data assimilation

DA in the presence of model error

Can we incorporate the short-time approximation for the model
error covariance in the context of DA procedures ?

Specific goals:

1 Computation of the model error covariance in the sequential
data assimilation - EKF

2 Computation of the model error correlations in the
weak-constraint 4DVar
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Extended Kalman Filter (EKF) in the presence of model error

Input xa , Pa

Forecast: xf = M(xa) & Pf = MPaMT + Pm

Analysis Update: xa = [I − KH] xf + Kyo & Pa = [I − KH]Pf

Pm - Model Error Covariance Matrix
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Extended Kalman Filter (EKF) in the presence of model error

Input xa , Pa

Forecast: xf = M(xa) & Pf = MPaMT + Pm

Analysis Update: xa = [I − KH] xf + Kyo & Pa = [I − KH]Pf

Pm - Model Error Covariance Matrix

Estimate Pm using the short time approximation
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Extended Kalman Filter in the presence of parametric error

CASE I - Parametric Error

Pm ≈< δµ0δµ
T
0 > τ2 = Qτ2

...needs to estimate Q
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Extended Kalman Filter in the presence of parametric error

CASE I - Parametric Error

Pm ≈< δµ0δµ
T
0 > τ2 = Qτ2

...needs to estimate Q

Two solutions proposed:

1 Statistically based on a priori information – Short Time EKF
(ST-EKF)

2 Dynamically (on the fly) using a state/parameter estimation approach
– Short Time Augmented EKF (ST-AEKF)
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Parametric Error - Numerical Analysis with ST-EKF and ST-AEKF

Carrassi, Vannitsem, Nicolis (2008) QJRMS and Carrassi & Vannitsem (2011) QJRMS

Prototype of nonlinear chaotic dynamics (Lorenz, 1996):
dxi
dt

= α(xi+1 − xi−2)xi−1 − βxi + F 1 ≤ i ≤ 36

ST-EKF - Q estimate statistically and then kept fixed along the assimilation cycle

ST-AEKF - Q estimated online by measuring system’s observables - State Augmented formulation

augmented system z = (M(x),F(λ))T

at analysis time the state and parameters are estimated along with their associated uncertainty (covariances)
and cross correlations
the updated parametric error covariance, Pa

λ =< δλδλT >, is then used to update Q ⇒ Pm
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Parametric Error - Numerical Analysis with ST-EKF and ST-AEKF

Carrassi, Vannitsem, Nicolis (2008) QJRMS and Carrassi & Vannitsem (2011) QJRMS

Q estimated online by measuring system’s observables - State Augmented formulation

simultaneous estimate of the three parameters
results averaged over an ensemble (O(100)) of experiments
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Parametric Error - Numerical Analysis with ST-EKF and ST-AEKF

Carrassi, Hamdi, Vannitsem, Termonia (2012) ASL

Land Surface model ISBA (Mahfouf and Noilhan, 1996)
State Variables: soil temperature (Ts and T2) and moisture content (wg and w2).

Observations of screen-level variables (temperature and humidity at 2 meter)
Parametric error in the Leaf Area Index (LAI) and Albedo
Comparison between EKF and ST-AEKF
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Error due to unresolved scales – ST-EKF

CASE II - Error of Unresolved Scales ⇒ Pm ≈< (f − f̂ )(f − f̂ )T > τ2

...needs to estimate the statistics of the vel. fields discrepancy.

Solution proposed:

Use of the analysis increments of a reanalysis data-set :

f − f̂ =
dx

dt
−

d x̂

dt
≈

xfr (t + τr )− xar (t)

τr
−

xar (t + τr )− xar (t)

τr
=

δxar
τr

⇒

Pm(t) ≈< δxar δx
a
r
T
>

τ2

τ2r

τr reanalysis assimilation interval

τ current assimilation interval
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Error due to unresolved scales – ST-EKF Carrassi & Vannitsem (2011) IJBC

Lorenz (1996) with two scales (large scale - x; small scale - y)
12 regular observations of the large scale, x, only

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F −

hc

b

10∑

j=1

yj,i , i = {1, ..., 36}

dyj,i

dt
= −cbyj+1,i (yj+2,i − yj−1,i ) − cyj,i +

hc

b
xi , j = {1, ..., 10}
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Accounting for model error in data assimilation Sequential Data Assimilation - EKF

Error due to unresolved scales – ST-EKF Carrassi & Vannitsem (2011) IJBC

Comparison with the EKF employing the inflation of the Pf as a tool to account for model error

(a) - EKF; Inflation procedure on the Pf → (1 + ρ)Pf

(b) - ST-EKF; Tuning of Pm → αPm (Pm estimated statistically and then kept fixed)

(c) - Analysis Error Comparison ST-EKF (α = 0.5 red line) and EKF (ρ = 0.09 black line)
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Accounting for model error in data assimilation Variational Data Assimilation - 4DVar

4DVar in the presence of model error - Short Time Weak Constraint 4DVar

 

 

analysis
observations

Assimilation Interval

assimilate observations distributed over the time window τ
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Accounting for model error in data assimilation Variational Data Assimilation - 4DVar

4DVar in the presence of model error - Short Time Weak Constraint 4DVar

 

 

analysis
observations

Assimilation Interval

assimilate observations distributed over the time window τ

analysis state as the minimum of a cost-function:

2J =

∫ τ

0

∫ τ

0
(δxmt1 )

T (Pm)−1
t1t2(δx

m
t2 )dt1dt2 +

M∑
k=1

ǫk
TR−1

k ǫk + ǫTb B
−1ǫb

Alberto Carrassi (CFU-IC3) DA and model error 16 October 2012 22 / 24



Accounting for model error in data assimilation Variational Data Assimilation - 4DVar

4DVar in the presence of model error - Short Time Weak Constraint 4DVar

 

 

analysis
observations

Assimilation Interval

assimilate observations distributed over the time window τ

analysis state as the minimum of a cost-function:

2J =

∫ τ

0

∫ τ

0
(δxmt1 )

T (Pm)−1
t1t2(δx

m
t2 )dt1dt2 +

M∑
k=1

ǫk
TR−1

k ǫk + ǫTb B
−1ǫb

Estimate model error covariances/correlations using
P(t1, t2) ≈ Q(t1 − t0)(t2 − t0)
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Accounting for model error in data assimilation Variational Data Assimilation - 4DVar

Results weak-constraint 4DVar Carrassi and Vannitsem, 2010 (MWR)

Lorenz 3-variable (1963) system

Assimilation interval τ = 8 time-steps, Obs frequency ∆tobs = 2 time-steps

Strong-constraint - Short-time weak constraint 4DVar - Weak constraint 4DVar with uncorrelated model error:
with Pm

t = αB (blue) or Pm
t = Q(t − t0)

2 (blue with red marks)
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Conclusion

Conclusions and Perspectives

the proposed formulations gave encouraging results in the framework of both sequential
and variational assimilation

treating the model error as a deterministic process makes possible to derive short-time
approximations for the error covariance suitable for DA applications

the estimation of model error covariances is based on fundamental features rather than
estimated using ad-hoc procedures

the model error statistics are easily adaptable to different observational frequencies and/or
assimilation intervals
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and variational assimilation

treating the model error as a deterministic process makes possible to derive short-time
approximations for the error covariance suitable for DA applications

the estimation of model error covariances is based on fundamental features rather than
estimated using ad-hoc procedures

the model error statistics are easily adaptable to different observational frequencies and/or
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Future directions:

simultaneous treatment of parametric and unresolved scales error

application to more realistic model (and model error) - observational scenarios (surface
data assimilation, use of adaptive control variable ...)

application of the state augmentation formulation for the state and parameter estimation
for seasonal and climate predictions
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