How do millennial proxy reconstructions methods stack up?

Terry Lee¹, Francis Zwiers², Min Tsao¹

Dept. of Math and Stats, University of Victoria, Victoria, BC Climate Research Division, Environment Canada, Toronto, Ontario

$$\frac{dX}{dt} = -\sigma X + \sigma Y + f_0 \cos \theta$$

$$\frac{dY}{dt} = -XZ + rX - y + f_0 \sin \theta$$

$$\frac{dZ}{dt} = xy - bZ,$$

 σ = 10, r=28, b=8/3

Allen and Stott, 2003, Climate Dynamics Section 4

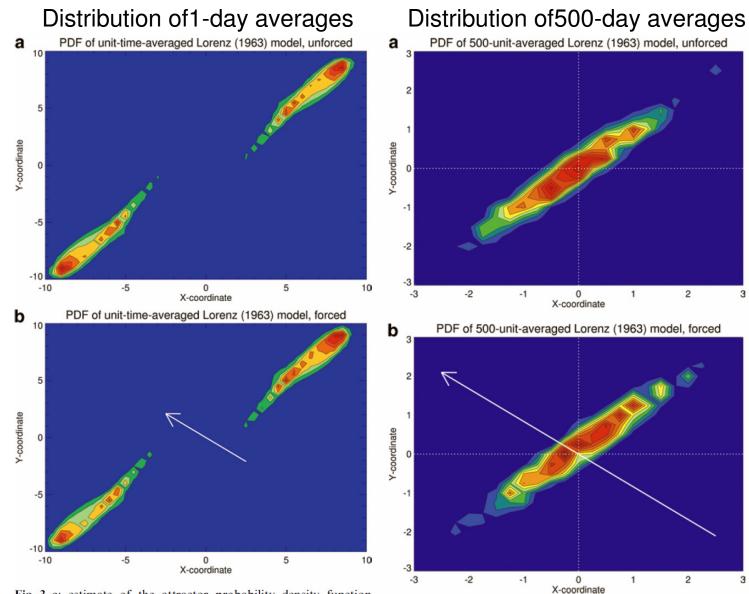


Fig. 3 a: estimate of the attractor probability density function (PDF) of the unforced Lorenz (1963), system. The plot shows a two-dimensional histogram of the location of "one-Lorenz-day" time-averaged values of the (X, Y) variables obtained from a long integration. b: PDF after imposing a steady forcing in the (X, Y) plane in the direction shown by the *arrow*, following Palmer (1999)

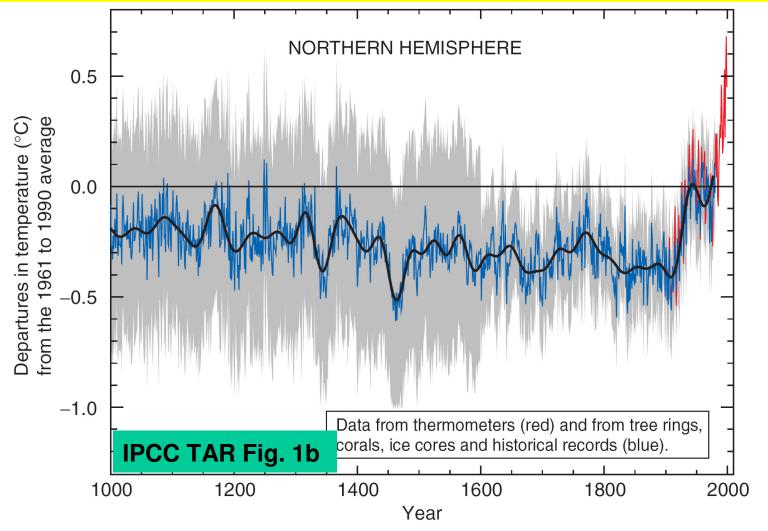
Fig. 4a, b As Fig. 3, but based on 500-Lorenz-day averaged data, to show the impact of time-averaging on the distributional properties of variability generated by a chaotic system: a simple consequence of the Central Limit Theorem

PACIFIC CLIMATE

Outline

- Background
- Reconstruction calibration techniques
- Their evaluation
- Conclusions
- Two extensions
 - Comments??

The "hockey stick" (TAR SPM)

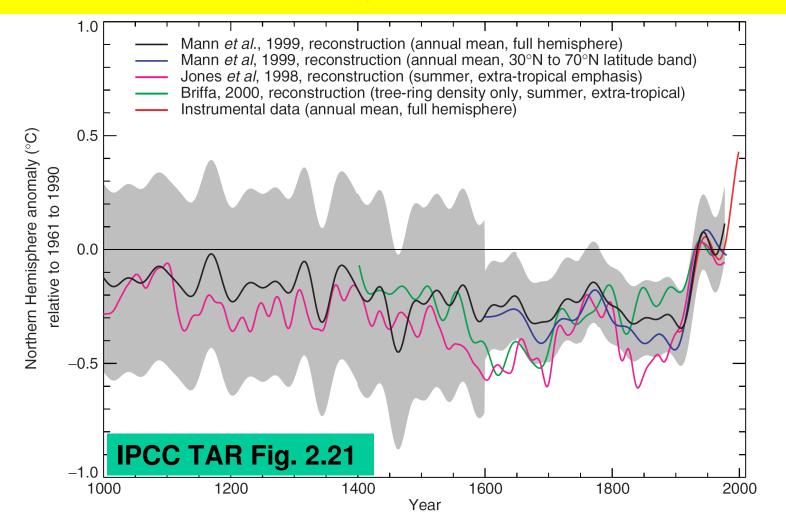


 "It is *likely* that the 1990s have been the warmest decade and 1998 the warmest year of the millennium"

The "hockey-stick" debate ...

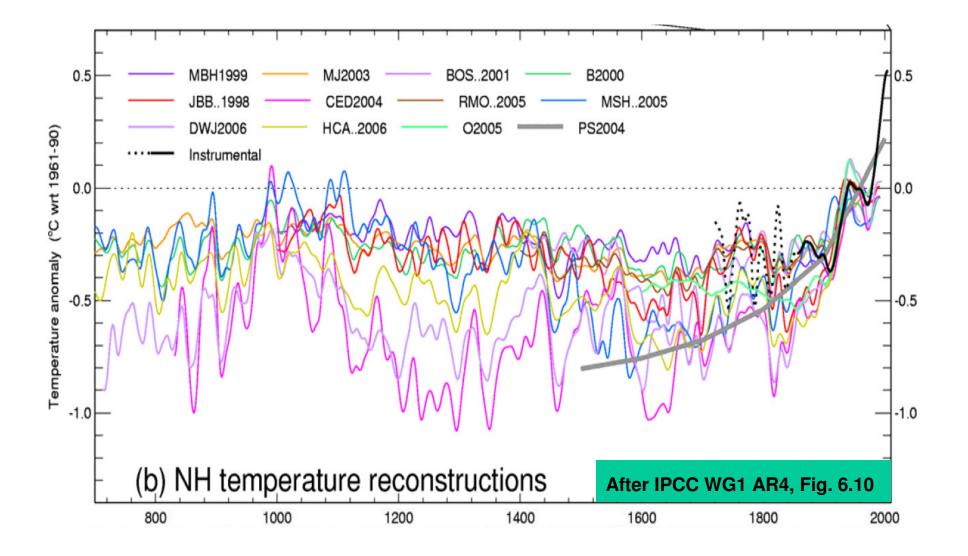
- Iconic figure and bold statement drew lots of interest from the sceptics
- Some Canadians particularly vocal
- Criticism focused on
 - Statistical method (influence of centering on EOFs)
 - Choice of proxies (use of Bristlecone Pines)

There was another figure in the TAR ...



- Indicating that the general form was robust,
- and that some reconstructions were more variable than others

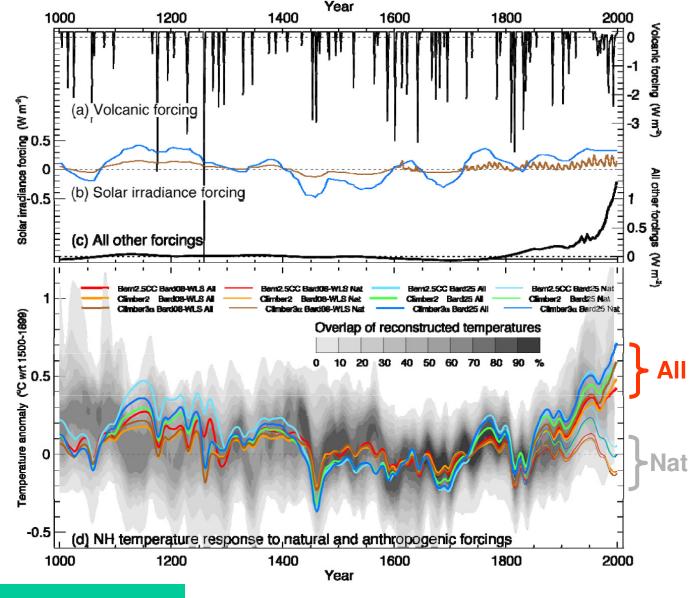
Reconstructions at time of AR4



Interpreting the reconstructions with models

- There now exist several long climate simulations with reconstructed volcanic, solar and GHG forcing
 - With AOGCMs (ECHO-G, CSM 1.4, HadCM3 ...)
 - EMICS
 - EBMS
 - (Note now even more as a consequence of CMIP5)
- These seem able to reproduce some of the features seen in the reconstructions...
- Detection studies confirm the presence of natural and anthropogenic signals...

Temperature of last millenium



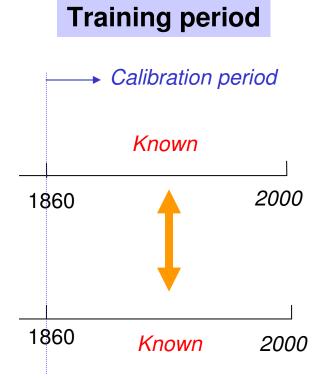
After IPCC WG1 AR4, Fig. 6.14

IPCC AR4 Assessment

- Average Northern Hemisphere temperatures during the second half of the 20th century were *very likely* higher than during any other 50-year period in the last 500 years and *likely* the highest in at least the past 1300 years.
- Assessment refers to longer time scales than in the TAR
- Many more reconstructions available
- Some detection results indicating external influence, detectable in all reconstructions that were examined
- Some inter-comparison of reconstruction techniques
- We have now undertaken a more complete assessment of available techniques (although still far from exhaustive)

The reconstruction techniques

The Reconstruction Problem



Identify a statistical relationship between a collection proxies and NH temperature

Two types of reconstruction techniques

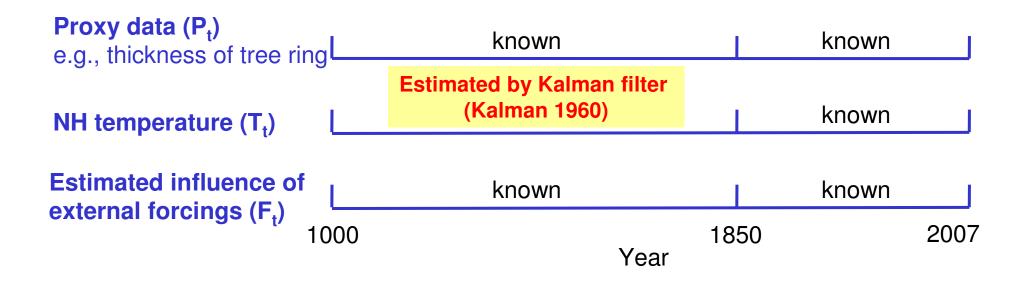
• CPS – composite plus scale

- Average (or composite) proxies into some index (e.g., just average, and make dimensionless)
- Calibrate the composite to hemispheric mean temperature from instrumental data
- CFR climate field reconstruction
 - EOF regression, or other technique, to reconstruct hemispheric temperature field
 - Used, for example, to reconstruct SSTs back into 1800's using sparse instrumental data
 - Spatially average the reconstructed field to estimate hemispheric mean temperature

Reconstruction techniques

CPS	•	Ordinary Least Squares	$T_t = \beta P_t + \mathcal{E}_t$
	•	Total Least Squares	$T_t = \beta(P_t - \eta_t) + \varepsilon_t$
	•	Variance Matching	$T_{t} = \beta P_{t} + \varepsilon_{t}$ $\hat{\beta} = \left[V(T) / V(P) \right]^{1/2}$
	•	Inverse Regression	$P_t = \beta T_t + \varepsilon_t$
	•	Kalman Filter/Smoother	$P_{t} = \beta T_{t} + \varepsilon_{t}$ $T_{t} = \varphi T_{t-1} + \delta F_{t} + \omega_{t}$
CFR-	•	MBH (1998)	$T_t = \int \sum_{k} \lambda_k u_{t,k} v_k dA + \varepsilon_t$
	•	RegEM	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

State-space model



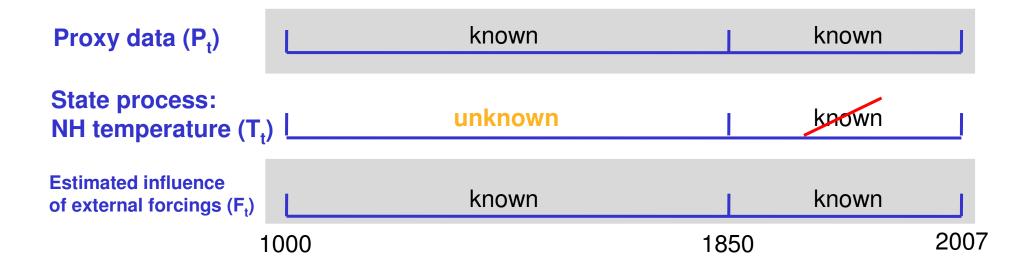
UNKNOWN !

Observation equation: $\mathbf{P}_t = \mathcal{A} \mathbf{T}_t + e_t$, $e_t \sim \mathcal{N}(0, \mathcal{R})$ State equation: $\mathbf{T}_t = \boldsymbol{\phi} \mathbf{T}_{t-1} + \boldsymbol{\delta} \mathbf{F}_t + w_t$, $w_t \sim \mathcal{N}(0, \mathcal{Q})$

Standard parameter estimation approach (STD)

• Maximum likelihood of state process given proxies and estimated responses to forcing.

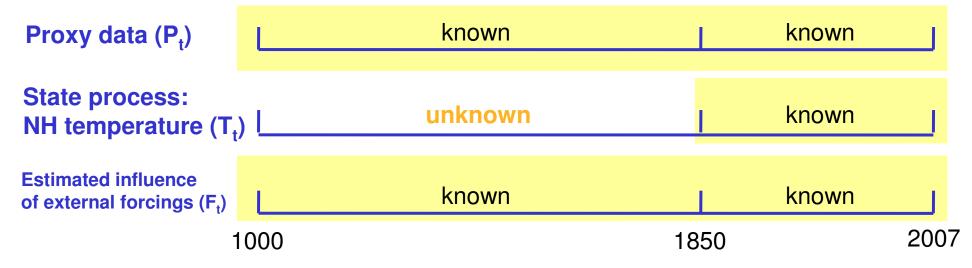
$$\ell_{\mathbf{P}}(\Theta) = -0.5 \sum_{t=1}^{N} \ln \left| \mathcal{A} \mathbf{S}_{t|t-1} \mathcal{A}^{\mathrm{T}} + \mathcal{R} \right| \qquad \text{Kalman filter estimates:} \\ \text{non-linear function of parameters} \\ -0.5 \sum_{t=1}^{N} (\mathbf{P}_{t} - \mathcal{A} \mathbf{T}_{t|t-1})^{\mathrm{T}} (\mathcal{A} \mathbf{S}_{t|t-1} \mathcal{A}^{\mathrm{T}} + \mathcal{R})^{-1} (\mathbf{P}_{t} - \mathcal{A} \mathbf{T}_{t|t-1})$$



University of Victoria

Improved parameter estimation technique (ALL)

$$-2 \ \ell_{\mathbf{P},\mathbf{T}}(\Theta) = \sum_{t=1}^{n} \left[\ln |\mathcal{A}\mathbf{S}_{t|t-1}\mathcal{A}^{\mathrm{T}} + \mathcal{R}| + (\mathbf{P}_{t} - \mathcal{A}\mathbf{T}_{t|t-1})^{\mathrm{T}} (\mathcal{A}\mathbf{S}_{t|t-1}\mathcal{A}^{\mathrm{T}} + \mathcal{R})^{-1} (\mathbf{P}_{t} - \mathcal{A}\mathbf{T}_{t|t-1}) \right] \\ + m \ln |\mathcal{R}| + \sum_{t=n+1}^{N} (\mathbf{P}_{t} - \mathcal{A}\mathbf{T}_{t})\mathcal{R}^{-1} (\mathbf{P}_{t} - \mathcal{A}\mathbf{T}_{t})^{\mathrm{T}} \\ \text{Kalman filter estimates} \\ + (m-1) \ln |\mathcal{Q}| + \sum_{t=n+2}^{N} (\mathbf{T}_{t} - \phi\mathbf{T}_{t-1} - \delta\mathbf{F}_{t})\mathcal{Q}^{-1} (\mathbf{T}_{t} - \phi\mathbf{T}_{t-1} - \delta\mathbf{F}_{t})^{\mathcal{T}} \\ + \ln |\phi\mathbf{S}_{n|n}\phi^{\mathrm{T}} + \mathcal{Q}| \\ + (\mathbf{T}_{n+1} - \phi\mathbf{T}_{n|n} - \delta\mathbf{F}_{n+1})(\phi\mathbf{S}_{n|n}\phi^{\mathrm{T}} + \mathcal{Q})^{-1} (\mathbf{T}_{n+1} - \phi\mathbf{T}_{n|n} - \delta\mathbf{F}_{n+1})^{\mathrm{T}}.$$

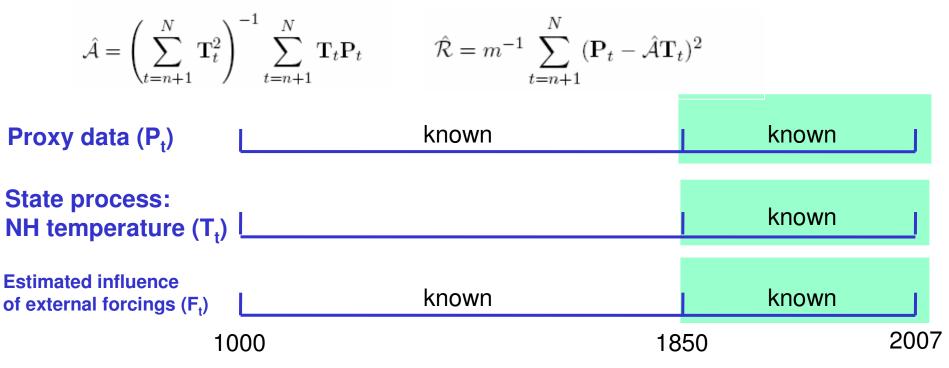


Competing parameter estimation technique (CAL)

• Uses only calibration period data.

$$-2 \ \ell_{\mathbf{c}}(\Theta) = \sum_{t=n+1}^{N} \left[\ln \mathcal{R} + (\mathbf{P}_t - \mathcal{A}\mathbf{T}_t)^2 / \mathcal{R} \right] + \sum_{t=n+2}^{N} \left[\ln \mathcal{Q} + (\mathbf{T}_t - \phi \mathbf{T}_{t-1} - \delta \mathbf{F}_t)^2 / \mathcal{Q} \right]$$

• MLEs can be solved explicitly, for example,



Comparing estimator properties

- Likelihood too complicated to derive asymptotic properties in all cases → used Monte-Carlo
- Generate data under assumed model:

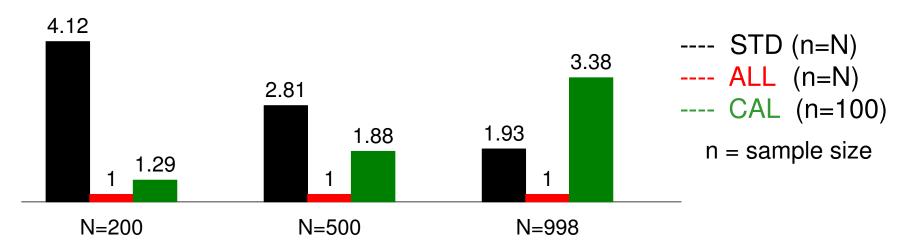
$$P_t = A T_t + e_t, \qquad e_t \sim N(0, R)$$
$$T_t = \phi T_{t-1} + \delta F_t + w_t, \quad w_t \sim N(0, Q)$$

- Specified reasonable values for A, ϕ , δ , R and Q.
- Used F_t from a simple EBM of the climate.
- Generated noise terms e_t and w_t from normal.

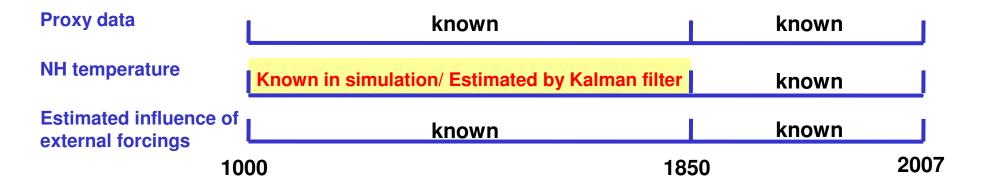
Relative efficiency of persistence parameter

Smaller value in efficiency= smaller estimator variance = better estimator

Estimated efficiency for ϕ (relative to ALL)



Reconstruction error



Reconstruction error (relative to ALL)

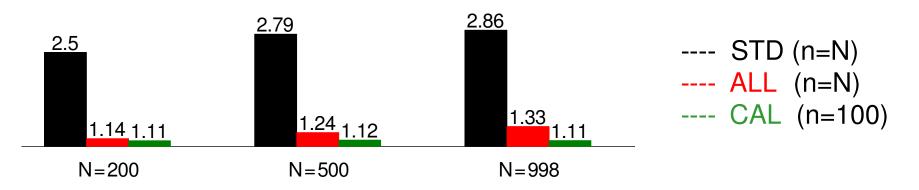
Robustness

$$e_{t} = \alpha e_{t-1} + \kappa_{t}, \quad \kappa_{t} \sim N(0, R)$$

$$P_{t} = A T_{t} + e_{t}, \qquad e_{t} \sim N(0, R)$$

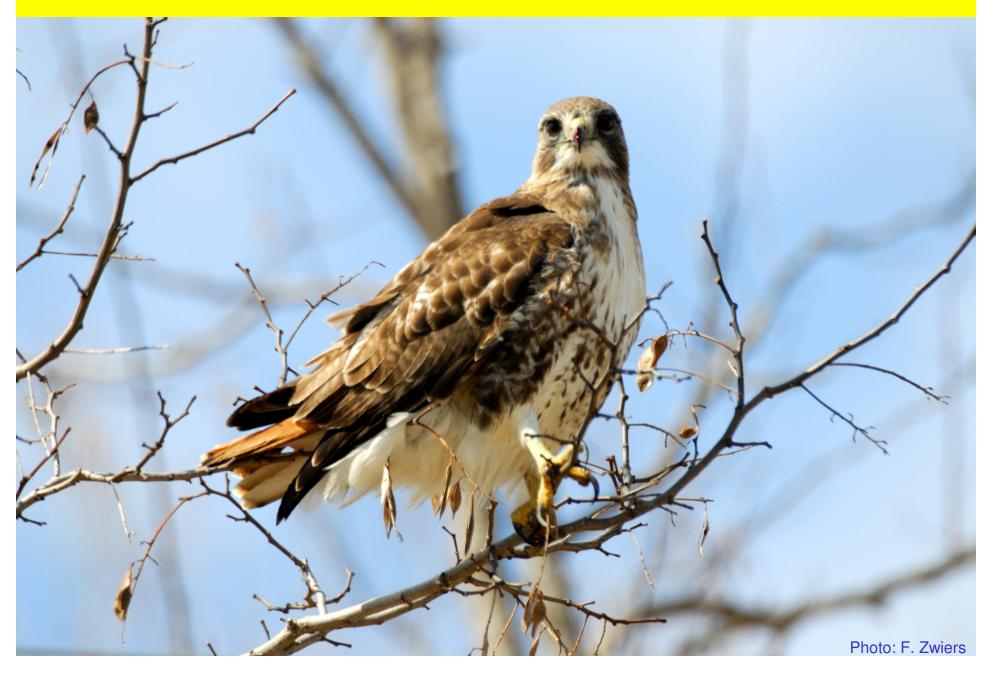
$$T_{t} = \phi T_{t-1} + \delta F_{t} + w_{t}, \qquad \text{Estimators from CAL are asymptotically unbiased!}$$

Change in reconstruction error (relative to iid case)



- STD approach should be avoided.
 - Larger bias.
 - Lower efficiency.
 - Less robust.
- CAL approach is more robust
 - Reconstruction errors similar to ALL approach
 - Resistant to misspecification of state equation
 - MLEs easily obtained
- ALL approach if desire is to estimate state equation parameters

Evaluating the reconstruction techniques

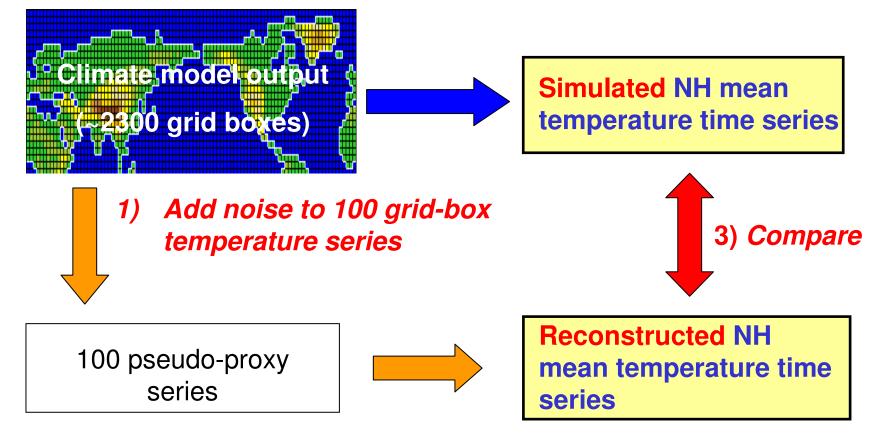


Evaluating Reconstruction techniques

- von Storch et al (2004) proposed using long climate simulations
- Idea was to
 - Sample model output at locations coinciding with proxies
 - Degrade by adding white noise
 - Apply reconstruction method
 - Compare with the known model simulated hemispheric mean temperature
- There are nuances to consider such as,
 - how much noise should be added?
 - what colour of noise should be added?
 - should one detrend prior to diagnosing the obs/proxy relationship?
 - what part of the spectrum should be used?
- The latter three questions are all broadly equivalent

Proposed evaluation technique

• Proposed by von Storch et al. (2004)



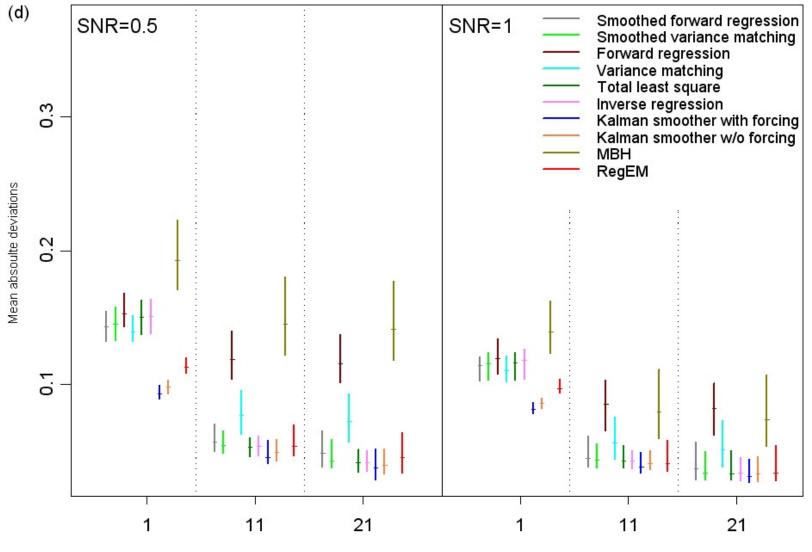
2) Apply reconstruction method

Some details

- We did this
 - Two different climate models
 - Two signal to noise ratios
 - White and red noise
 - Different sizes of proxy networks
 - Different lengths of calibration period
 - Effects of detrending prior to calibration
- We did NOT condition on a fixed proxy network
 - Repeated reconstruction 1000 times
 - A different proxy network at each time
 - A different realization of added noise each time

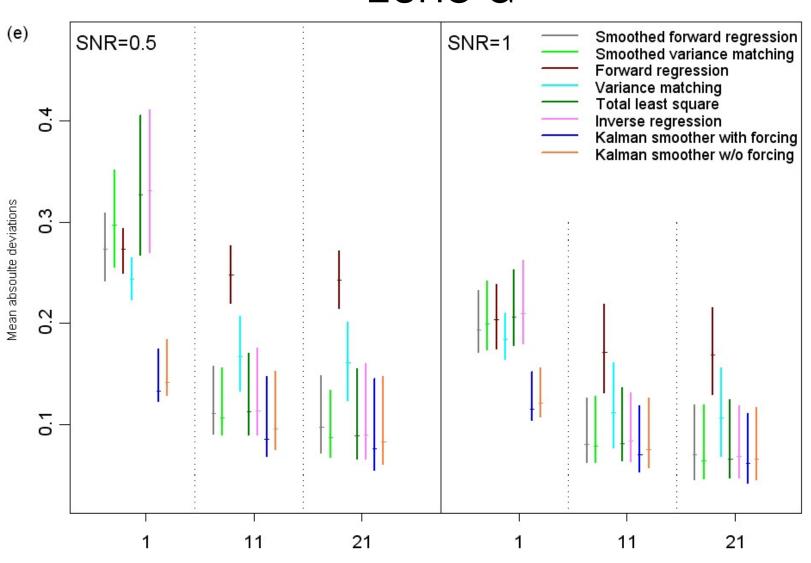
100 pseudo proxies – 1860-1970 calibration – mean abs deviation

ECHO-G



Years of running mean

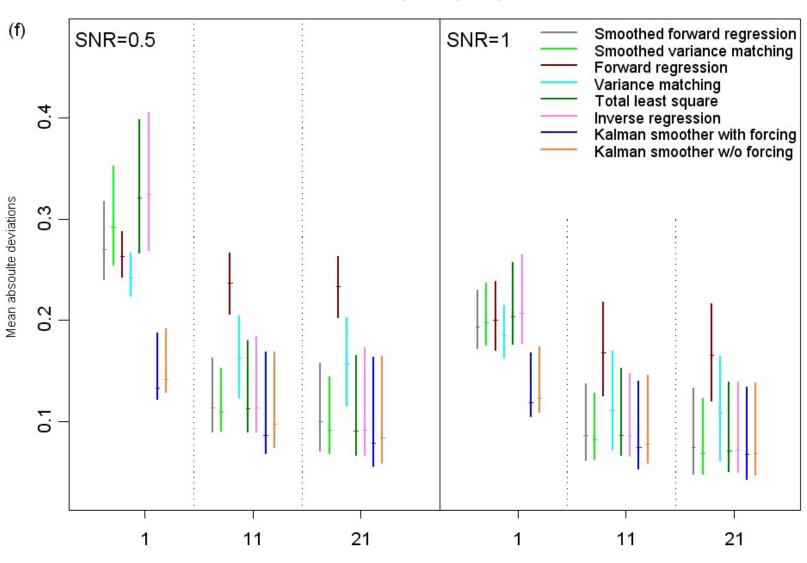
15 pseudo proxies – 1860-1970 calibration – mean abs deviation



ECHO-G

Years of running mean

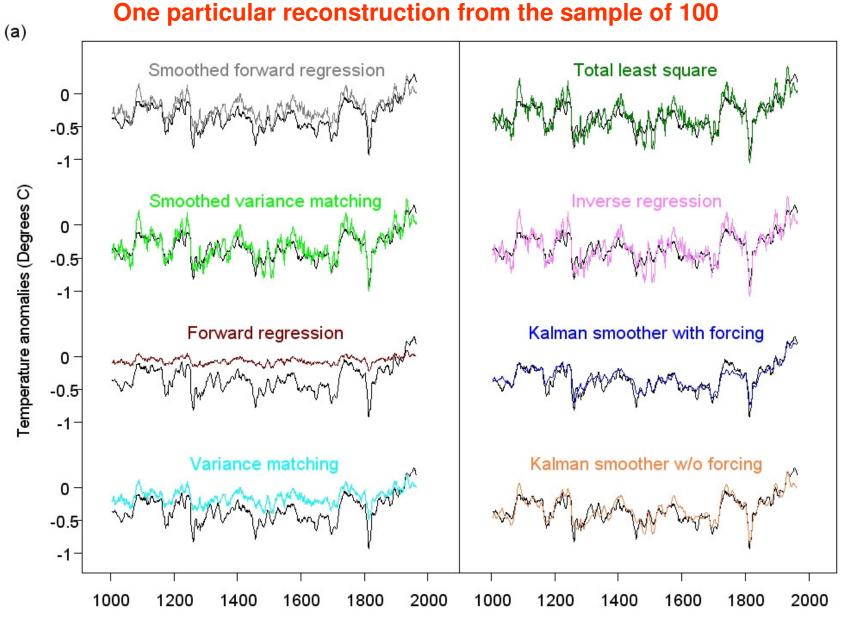
15 pseudo proxies – 1880-1960 calibration – mean abs deviation



ECHO-G

Years of running mean

15 point network – 11 year moving average – CSM - SNR = 0.5



Conclusions

- Some reconstruction methods to should be avoided
- Several other methods compare well, particularly at low frequency
- Assessment is not sensitive to which "reality" one compares against
- CFR methods do not have a particular predilection to producing hockey stick like reconstructions
- The new Mann et al CFR technique works well, but CFR does not appear to be consistently better that CPS
- Kalman filter approach appears to produce consistently good results across time scales
- There is probably greater sensitivity to the choice of proxy than to the choice of reconstruction method (see also Juckes et al, 2007, *Climate of the Past Discussions*, **vol 2**)

Two Extensions using Kalman smoother ...

State space model

$$P_{t} = \beta T_{t} + \varepsilon_{t}$$
$$T_{t} = \varphi T_{t-1} + \delta F_{t} + \omega_{t}$$

where

$$F_{t} = \alpha_{Sol}r(Sol_{t}) + \alpha_{Vol}r(Vol_{t}) + \alpha_{G}r(GHG_{t}) + \alpha_{S}r(Sul_{t})$$

- Data assimilation (of sorts) using a climate model to assimilate proxy information and observed hemispheric temperatures
- Fitting the state space model provides estimates of coefficients and their uncertainty → allows "*detection*"
- Integrate climate model forward in time → allows
 "prediction"

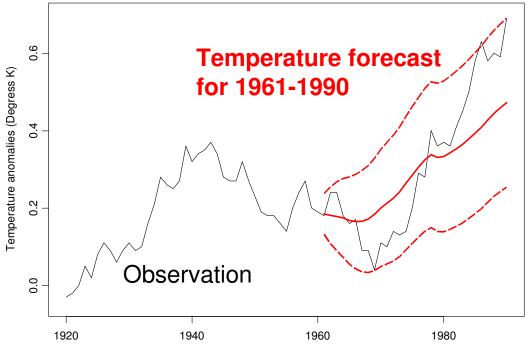
Results ...

Climate change detection:

- Using real-world proxy data (1510-1960):
 - Effect of greenhouse gas, aerosol and volcanic forcing has significantly affected our past climate.
 - Consistent with other detection studies.

Temperature prediction:

• Result with real-world proxy data (1510-1960):



References

- Lee, T.C.K., F.W. Zwiers and M. Tsao, 2008: Evaluation of millennial proxy reconstruction methods. *Climate Dynamics*, **31**, 263-281, doi 10.1007/s00382-007-0351-9.
- Lee, T.C.K., M. Tsao, F.W. Zwiers, 2010: State-space model for proxy-based millennial reconstruction. *Canadian Journal of Statistics*, 38, 488-505.