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DA-based Attribution:
A tentative illustration on stratospheric cooling
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Motivation and approach followed

 Provide a tentative illustration of Data Assimilation-based Attribution.
— ‘Methodological lab’: initial testing of the DADA idea
— ‘Realistic’ historical D&A case: stratospheric cooling.
— Purely synthetic data (simulated observations only).

 Proposed steps:
— Implementation of a 1D toy model (n = 101)
— Parameters describe forcings.
— Evaluation of parameters based on observations
— Using the Augmented-State EKF.



Data Assimilation for Detection and Attribution

Computational 
Constraint

Optimal 
Fingerprinting 
D&A

Toy
Models

Intermediate
Complexity

Models
GCMs

Climate Model Complexity

In
ve

rs
io

n 
P

ro
ce

d
ur

e 
C

om
p

le
xi

ty
Data

Assimilation

Linear
Regression

Others

DA-based
D&A ?

this presentation







Anterior works

 DA-based parameter estimation (Juan and Manuel’s presentations)
— large and increasing number of studies and applications across

Geophysics.

 DA-based reconstruction (Marc’s presentation):
— of a source (pollutant)
— from the observation of its effects
— using a physical model (advection)

 DA-based reconstruction of radiative forcings:
— Annan 2005: an illustration using the Lorenz model



Anterior works: Annan 2005

 Illustrative approach based on a toy’s model.

 Forward model: the forced Lorenz model.

 Unobserved: forcing magnitude coefficients.

 Inversion procedure: Augmented-State EnKF.

 Result: it works (convergence towards true value)
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Description of the model

 A 1D atmospheric column radiative model (Li et al. [1997])
 Schematic diagrams:

...

n atmospheric layers

i = 0

i = 1

i = 2

i = n

solar and terrestrial radiative fluxes in layer i



Description of the model

 Model equations for layers i = 1, 2, … , n-1

 Physical properties of fluxes between two adjacent layers:

 Radiative equilibrium within layer i:

t: longwave transmissivity

τ: shortwave transmissivity

ρ: shortwave reflectivity 



Description of the model

 Model equations for top and bottom layers ( i = 0 and n ):

 Physical relationships at boundaries:

 Dynamics entirely driven by surface heat take-up:

S: solar constant

ρ0: surface albedo 



Resolution of the model

 Static resolution

 Prescribed: time-constant spatial patterns of ρ, τ and t

 Result: equilibrium spatial pattern T* of temperature (exact
expression)



Closed form resolution

K =

E = 



Resolution of the model

 Static resolution

 Prescribed: time-constant spatial patterns of ρ, τ and t

(from IPSL model - Li et al. [1997])



Resolution of the model

 Static resolution

 Result: equilibrium spatial pattern T* of temperature



Resolution of the model

 Dynamic resolution

 Prescribed: time-trajectories of the spatial patterns of ρ, τ and t

 Result: time-trajectory of the spatial pattern of temperature
(discretization)



Resolution of the model

 Prescribed: time-trajectory of the spatial pattern of t (GHG forcing)



Resolution of the model

 Result: time-trajectory of the spatial pattern of temperature (GHG
forcing only)

1D model PCM model (AR4 [2007])



Resolution of the model

 Prescribed: time-trajectory of the spatial pattern of τ (O3 forcing)

τ τ

τ



Resolution of the model

 Result: time-trajectory of the spatial pattern of temperature (GHG
forcing only)

1D model PCM model (AR4 [2007])



Resolution of the model

 Prescribed: time-trajectory of the spatial pattern of ρ (aerosol forcing)

ρ ρ

ρ



Resolution of the model

 Result: time-trajectory of the spatial pattern of temperature (GHG
forcing only)

1D model PCM model (AR4 [2007])



Resolution of the model

 Result: time-trajectory of the spatial pattern of temperature (all
forcings)

1D model PCM model (AR4 [2007])



Parameterization of forcings

 Forcing j at time t and location i:

 Five scalar values for each three forcings (15 parameters):
— magnitude β,
— position of time pattern m, shape of time pattern s,
— position of spatial pattern µ, shape of spatial pattern σ.

 One vector of parameters:



Resolution of the model

 Result: time-trajectory of the spatial pattern of temperature (all
forcings)



Simulation of observations

 Observed temperature:
— model simulated temperature (deterministic)
— internal variability (stochastic)
— measurement error (stochastic)



Simulation of observations

 Observed temperature:
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Infering forcings from observations

 Observed quantities:
— Temperature at every time t and location i.

 Unobserved quantities to be evaluated:
— State: climatologic temperature at every time t and location i.
— Parameters:  forcings space-time patterns + physical parameters.



Infering forcings from observations

 Can we reconstruct unobserved radiative forcings from observed
temperatures ?

 Approach: data assimilation on state variables and parameters.
— State-augmented vector:

— Dynamic equation:

— Observation equation:



Infering forcings from observations

 Sequential inference:
— Forecast step:

— Analyis step:

 Linearization:
— Tangent model (closed form):

— Forward operator (linear in the first place):



Extended Kalman Filter procedure

 Extended Kalman filter:
— Forecast step:

— Analysis step:

— Intermediate quantities:



Initialization

 Initializing requires an a priori distribution on x0:

 A priori independence between temperatures and parameters:

 Natural choice for temperatures:

= ? = ?= ?



Initialization

 What about prior distributions of parameters ?
— Should it be informative or non informative ?
— If informative, ‘objective expert’ a priori or ‘devil’s advocate’ a priori ?

 ‘fingerprinting-like’ option chosen:
— Non informative prior
— e.g. E(β) = 0,  Var(β) = 10

= ?



Results

 Actual space-time patterns of forcings:

 Reconstructed space-time patterns of forcings:

t τ ρ

t τ ρ



Results

 Actual (red) and reconstructed (dark) magnitudes of forcings:

t τ ρ

Attribution to GHG emissions in year 2035



Results

 Space-time patterns are now assumed to be known up to a scaling
factor (only parameter β is not known):

t τ ρ



Results

 Space-time patterns are now assumed to be known up to a scaling
factor (only parameter β is not known):

t τ ρ

Attribution to GHG emissions in year 2010



Results

 Space-time patterns are now assumed to be known up to a scaling
factor (only parameter β is not known):

t τ ρ

Attribution to GHG emissions in year 2010



Infering forcings from observations

 Linearization:
— Tangent model (closed form):



Infering forcings from observations

K =

E = 



Statistical ‘evidencing’ for D&A in EKF

 Can be approached as a comparison between two priors
— An objective a priori on forcings (actual GHG level)
— A devil’s advocate a priori (no GHG for instance)

 The Bayes factor is an option:
— Informational metric
— Exact expression available in the EKF context



Jeffrey’s scale

An absolute scale is available:
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Inclusion of confounding factors

 The inference procedure is run with:
— inclusion of two extra parameters representing albedo and solar change.

— strongly informative a priori that GHG forcing is inexistant.
— non informative a priori about solar and albedo changes.
— observations simulated with a GHG-only forcing.



Inclusion of confounding factors

 The inference procedure is run with:
— inclusion of two extra parameters representing albedo and solar change.
— strongly informative a priori that GHG forcing is inexistant.
— non informative a priori about solar and albedo changes.
— observations simulated with a GHG-only forcing.

 Results:
— Wrong attribution to solar constant and albedo change.
— Substantial underestimation of GHG magnitude.

Δ longwave transmissivity



Inclusion of confounding factors

 The inference procedure is run with:
— inclusion of two extra parameters representing albedo and solar change.
— strongly informative a priori that solar and albedo changes are inexistant.
— non-informative a priori about GHG change.
— observations simulated with solar and albedo change forcing only (no GHG).

 Results:
— Wrong attribution to GHG change.



Inclusion of confounding factors

 The combination of a decrease in solar constant with a decrease in
surface albedo results in a pattern identical to an increase in GHG.

GHG response

+



Inclusion of uncertain physical quantities

 The framework can be extended for simultaneous inference of other
parameters representing uncertain climatic quantities of interest.

 Climate sensitivity is assumed uncertain (due to feedback):



Limitation of EKF: overconfidence

 Kalman filtering of constant parameters can only decrease
uncertainty.

 This is a big limitation of KF for inference of constant parameters:
— decrease of variance is actually far from being systematic
— typically, variance increases result from ‘surprising’ observations



Limitation of EKF: overconfidence

 Comparison to a full Bayesian inversion of climate sensitivity:

Mean Standard deviation
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Comparison with optimal fingerprinting

 Assuming patterns are known up to a scaling factor (parameter β)
allows for direct comparison to an optimal fingerprinting treatment of
inference.

 Optimal fingerprinting setting:
— Generation of the single-forcing model simulations, zt

(j) for j = 1,…, J.
— Concatenation of all variables up to time t
— Linear regression model - Total Least Squares (Allen and Stott [2003]):

where and nr is the number of simulated runs.



Comparison with optimal fingerprinting

 The assumption of response additivity holds very well both spatially
and temporally:

Spatial response at time t = 2100 Temporal response at layer j = 10

actual response                sum of individual responses 



Comparison with optimal fingerprinting

 Scaling parameters β at time t = 2015:

 Scaling parameters β at any time t:

Attribution to GHG 
emissions in year 2015



Comparison with optimal fingerprinting

 Non convergence of factors β (non orthogonal patterns ?)
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Metamodeling

 Notion of ‘metamodel’.
— simplified, parametric model of a large, complex model.
— physical model, statistical model, or both.
— used in different fields (oil industry, aeronautics, …)
— other names in climate science: ‘emulator’, ‘response function’,…

 Multiple purposes:

Wang and Shen (2007)
Inversion



Metamodeling

 Optimal fingerprinting can be formulated under a DA set-up:
— it can be resolved ‘step by step’ using the EKF,
— rather than ‘all at a time’ using TLS.

with:

with:

⇔



Metamodeling

 Optimal fingerprinting can be viewed as a particular kind of
metamodel:
— purely statistical metamodel.
— no explicit physics (entirely summarized by runs).

 Many possible other metamodels for D&A
— purely statistical (EMR)
— statistical and physical (fitting a toy model to a GCM)
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Discussion and conclusion

 Results of the DA-based inversion of the 1D model:
— space-time patterns of forcing perturbation decently reconstructed.
— attribution can be derived from reconstructions’ confidence intervals.
— the computational constrain is still far away (~10s for 300 years of DA).

 Results highlight some avantages of DA-based inversion:
— specification of fingerprints beforehand is unnecessary.
— allows for precise modeling of the initial state of knowledge on the

perturbation (e.g. spatial and temporal patterns).
— easy inclusion of confounding effects, even ‘unknown’.
— easy inclusion of uncertainty on poorly known physical parameters.



Discussion and conclusion

 More avantages of a DA-based inversion approach:
— handling of model error.
— handling of measurement error.
— incorporating multiple sources of observations (variable and forcings).
— handling of multiple state variables and observations simultaneously.
— coupling with impact model and observations.
— straightforward derivation of Bayes factor.

 Metamodeling:
— metamodeling can be a workaround to use complex models for D&A in

much less computational time.
— optimal fingerprinting can be viewed as a particular case of metamodel.

 Possible extension to a more general « climate learning » framework.
— Observations constrain both forcings and model’s parameters.



Discussion and conclusion

 Difficulties of the DA-based approach:
— best strategy to handle time-varying forcings unclear (determinist pattern

parameterization or stochastic model ?).
— the variance decrease on fixed parameters is an issue (use particle filter

instead ?).
— potentially a long list of technical problems to solve if we want to ‘go

big’.


