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Harold Edwin Hurst

“Given a series of annual discharges recorded for a past period, it is easy to calculate
what storage would have been enough to equalize the flow and send down the mean
discharge every year throughout the period. Much more than this is needed, however,
before a policy can be laid down for the future, since the past is never exactly repeated”
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Long range dependence (LRD)

Long-range dependency is a phenomenon that may arise in the analysis of spatial or
time series data. It relates to the rate of decay of statistical dependence, with the
implication that this decays more slowly than an exponential decay, typically a
power-like decay. LRD is often related to self-similar processes or fields.
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Famous random fields in Geostatistics

The Gneiting family of space-time covariance functions.

K(h, u) = σ2ψ(u2)−d/2φ

(
‖h‖2

ψ(|u|2)

)

• Gaussian
• Stationary

Other families, Dagum, Cauchy, ...
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Stochastic Partial Differential Equations
Let L be a partial differential operator, e.g. L = ∂2

∂t2
−∆x, t ∈]0, T ], x ∈ Rk, and

u(t,x) = (u1(t,x), . . . , ud(t,x)) ∈ Rd the solution of the system


Lu1(t,x) = b1(u(t,x)) +

∑d
j=1 σ1,j(u1(t,x))Ẇ j(t,x)

...
Lud(t,x) = bd(u(t,x)) +

∑d
j=1 σd,j(u1(t,x))Ẇ j(t,x).

• Reasonable
• Existence of solution,
• Uniqueness

• More than reasonable
• Have a Probability density function.

- F. Lindgren, H. Rue & J. Lindstrom (2011): An explicit link between Gaussian fields
and Gaussian Markov random fields: the stochastic partial differential equation
approach.
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• Reasonable
• Existence of solution,
• Uniqueness

• More than reasonable
• Have a Probability density function.

- F. Lindgren, H. Rue & J. Lindstrom (2011): An explicit link between Gaussian fields
and Gaussian Markov random fields: the stochastic partial differential equation
approach.



In & Mo Tools Ex & Un Density of the Solution The Hermite case References

Stochastic Partial Differential Equations
Let L be a partial differential operator, e.g. L = ∂2

∂t2
−∆x, t ∈]0, T ], x ∈ Rk, and

u(t,x) = (u1(t,x), . . . , ud(t,x)) ∈ Rd the solution of the system


Lu1(t,x) = b1(u(t,x)) +

∑d
j=1 σ1,j(u1(t,x))Ẇ j(t,x)
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The transport equation
• Consider a fluid flow with the presence of a contaminant,

• Make the balance equations for the contaminant in a arbitrary ball.
• Calculus fundamental theorem + divergence theorem.

The linear transport equation,

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 . (1)

Emerges as a model for the concentration (density) of a pollutant in a flow. It is a
particular case of the advection equation when the flow under consideration is
incompressible (i.e. has zero divergence).

- C.M. Dafermos (2010): Hyperbolic conservation laws in continuum physics.
- J. Duan, H. Gao and B. Schmalfuss (2002): Stochastic dynamics of a coupled
atmosphere-ocean model.
- P.L. Lions (1996): Mathematical topics in fluid mechanics, Vol. I: incompressible
models.
- P.L. Lions (1998): Mathematical topics in fluid mechanics, Vol. II: compressible
models.
- B. Perthame (2007): Transport Equations in Biology.
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The stochastic linear transport equation

We analyse the following one-dimensional Cauchy problem: given an initial-data u0,
find u(t, x;ω) ∈ R, satisfying


∂tu(t, x;ω) + ∂xu(t, x;ω)

(
b(t, x) +

dZt

dt
(ω)
)

= 0,

u(t0, x) = u0(x),

(2)

with (t, x) ∈ UT = [0, T ]×R, ω ∈ Ω, b : [0, T ]×R→ R a given vector field, and the
noise (Zt)t≥0 is a stochastic process with zero quadratic variation.

- E. Fedrizzi & F. Flandoli. (2013): Noise prevents singularities in linear transport
equations.
- F. Flandoli, M. Gubinelli & E. Priola, (2010): Well-posedness of the transport equation
by stochastic perturbation.
- H. Kunita (1984): Stochastic differential equations and stochastic flows of
diffeomorphisms.
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Stochastic Calculus via regularization

• T is a fixed positive real number.
• (Xt)t≥0 a continuous process.

• (Yt)t≥0 a process with paths in L1
loc(R

+), i.e. for any b > 0,
∫ b
0 |Yt|dt <∞ a.s.

I0(ε, Y, dX)(t) =

∫ t

0
Ys

(Xs+ε −Xs−ε)
2ε

ds, t ≥ 0. (3)

Then, the simmetric integral is defined as

∫ t

0
Ysd
◦Xs := lim

ε→0
I0(ε, Y, dX)(t), (4)

for every t ∈ [0, T ], provided the limit exists in the ucp sense (uniformly on compacts in
probability).
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Stochastic Calculus via regularization

The covariation or generalized bracket, [X,Y ]t of two stochastic processes X and Y is
defined as the limit ucp when ε goes to zero of

[X,Y ]ε,t =
1

ε

∫ t

0
(Xs+ε −Xs) (Ys+ε − Ys) ds, t ≥ 0.

Note that [X,Y ] coincide with the classical bracket when X and Y are
semimartingales.

F. Russo & P. Vallois (1993): Forward, backward and symmetric stochastic integration.
F. Russo & P. Vallois (2007): Elements of stochastic calculus via regularization.
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Malliavin Derivative

• H a real separable Hilbert space.
• (Ω,A,P) a probability space.
• (B(ϕ), ϕ ∈ H) a centred Gaussian family of random variables such that

E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H

• S the space of smooth functionals of the form F = g(B(ϕ1), . . . , B(ϕn)).
(g is a smooth function with compact support and ϕi ∈ H, i = 1, ..., n)

For functions F ∈ S the malliavin derivative operator D, acts in the form

DF =
n∑
i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.
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Malliavin Derivative

The operator D is closable from S into L2(Ω;H), and accept the following chain rule:

Proposition
If ϕ : R→ R is a continuously differentiable function and F ∈ D1,2, then ϕ(F ) ∈ D1,2

and
Dϕ(F ) = ϕ′(F )DF. (5)

where D1,p which is the closure of S with respect to the norm

‖F‖p1,p = EF p + E‖DF‖pH.

D. Nualart (2006): Malliavin Calculus and Related Topics.
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Weak solution

Definition
A stochastic process u ∈ L∞(Ω× [0, T ]× R) is called a weak Lp−solution of the
Cauchy problem (2), if for any ϕ ∈ C∞c (R),

∫
R u(t, x)ϕ(x)dx is an adapted real valued

process which has a continuous modification, finite covariation, and for all t ∈ [0, T ],
P-almost surely

∫
R
u(t, x)ϕ(x)dx =

∫
R
u0(x)ϕ(x) dx+

∫ t

0

∫
R
u(s, x) b(s, x)∂xϕ(x) dxds

+

∫ t

0

∫
R
u(s, x) b′(s, x)ϕ(x) dxds+

∫ t

0

∫
R
u(s, x) ∂xϕ(x) dxd◦Zs.

where b′(s, x) denotes the derivative of b(s, x) with respect to the spatial variable x,
and the integral d◦Z is a symmetric integral defined via regularization (see (4)).
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Weak solution

Proposition
Assume that b ∈ L∞((0, T );C1

b (R)). Then there exists a C1(R) stochastic flow of
diffeomorhism (Xs,t, 0 ≤ s ≤ t ≤ T ), that satisfies

Xs,t(x) = x+

∫ t

s
b(u,Xs,u(x))du+ Zt − Zs (6)

for every x ∈ Rd. Moreover, given u0 ∈ L∞(R), the stochastic process

u(t, x) := u0(X−1
t (x)), t ∈ [0, T ], x ∈ R (7)

is the unique weak L∞−solution of the Cauchy problem 2, where Xt := X0,t for every
t ∈ [0, T ].
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Weak solution

Lemma
Assume b ∈ L∞

(
(0, T );C1

b (R)
)
∩ C ((0, T )× R) . Then the inverse flow satisfies the

backward stochastic equation

Ys,t(x) = x−
∫ t

s
b(r, Yr,t(x))dr − (Zt − Zs) (8)

for every 0 ≤ s ≤ t ≤ T and for every x ∈ R.
Moreover, Y is the unique process that satisfies (8) with Ys,s(x) = x.

Remark
If we set Rt,x(u) = Yt−u,t(x), Bt(a, x) = −b(t− a, x) and Zu,t = −(Zt − Zt−u) for
t ∈ [0, T ], u ∈ [0, t], and x ∈ R, then we have

Rt,x(u) = x+

∫ u

0
Bt(a,Rt,x(a))da+ Zu,t. (9)
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Malliavin differentiability of the inverse flow

b ∈ L∞
(
(0, T );C1

b (R)
)
∩ C ((0, T )× R) . (10)

The noise Z is a zero quadratic variation process, adapted to the filtration
(Ft)t∈[0,T ] such that Zt ∈ D1,2 for every t ∈ [0, T ].

sup
t∈[0,T ]

E |Zt|2 <∞ and sup
t∈[0,T ]

E‖DZt‖2L2([0,T ])
<∞. (11)

Lemma
Under hypothesis (10) and (11), the equation (9) has an unique solution.
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Malliavin differentiability of the inverse flow

Proposition
Assume (10) and (11). Then, for x ∈ R, t ∈ [0, T ], u ≤ t, the random variable Rt,x(u)
given by (9) belongs to D1,2. Moreover, the Malliavin derivative of Rt,x(u) satisfies

DαRt,x(u) =

∫ u

0
B′t(s,Rt,x(s))DαRt,x(s)ds+DαZu,t (12)

for every α < t.
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Density of the Solution

Proposition
Assume that b satisfies (10), Z satisfies (11) and Y be given by (8). Then for every
s ≤ t, α ≤ t and x ∈ R, we have

DαYs,t(x) = 1(0,T )(α)e−
∫ t
s b

′(u,Yu,t(x))du

×
∫ t

s
b′(u, Yu,t(x))Dα(Zu,t)e

∫ t
u b

′(r,Yr,t(x))dr du

+ Dα(Zs,t). (13)
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Density of the Solution

Proposition
Fix 0 ≤ s ≤ t ≤ T . Assume (10) and (11). In addition we will suppose that for every
0 < s < t ≤ T

‖DZt‖2L2([t−s,T ])
=

∫ T

t−s
(DαZt)

2dα > 0, almost surely. (14)

Then the law of Ys,t(x) is absolutely continuous with respect to the Lebesgue measure.
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Density of the Solution

Theorem
Let u(t, x) be the solution to the transport equation (2). Assume that u0 ∈ C1(R) such
that there exists C > 0 with (u′0(x))2 > C for every x ∈ R. Then, for every t ∈ [0, T ]
and for every x ∈ R, the random variable u(t, x) is Malliavin differentiable. Moreover
u(t, x) admits a density with respect to the Lebesgue measure.
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The Hermite Process

We denote by (Z
(q,H)
t )t∈[0,T ] the Hermite process with self-similarity parameter

H ∈ (1/2, 1). For t ∈ [0, T ] it is given by

Z
(q,H)
t = d(H)

∫ t

0
. . .

∫ t

0
dWy1 . . . dWyq

(∫ t

y1∨...∨yq
∂1K

H′
(u, y1) . . . ∂1K

H′
(u, yq)du

)
,

the kernel KH (t, s) has the expression

KH (t, s) = cHs
1/2−H

∫ t

s
(u− s)H−3/2uH−1/2 du

where t > s and cH =
(

H(2H−1)
β(2−2H,H−1/2)

)1/2
and β(·, ·) is the Beta function. For

t > s, the kernel’s derivative is

∂KH

∂t
(t, s) = cH

( s
t

)1/2−H
(t− s)H−3/2

.
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The Hermite Process

Lemma
ZH is a zero quadratic variation process.

Lemma
The Hermite process satisfies (11) and (14).
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