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Harold Edwin Hurst

“Given a series of annual discharges recorded for a past period, it is easy to calculate
what storage would have been enough to equalize the flow and send down the mean
discharge every year throughout the period. Much more than this is needed, however,
before a policy can be laid down for the future, since the past is never exactly repeated”

THE TROBLEM OF LONG-TERM STORAGE IN
RESERVOIRS

i -‘"'f‘f‘-!‘”ﬂ onind H. E. TTursy, CMG., MAL, DSe, Tolnst P,
s Scientific Cangulrant 1 the Mindsiry of Public Works, Egyvpt

THE PROBLEM OF LONG TERM STORAGE IN RESE L LNTRODUSTION
i

The uze of the water of a river for itrigation so as to extract the maxmum
benefic requires that the Bow of the river ghall he cegolared by weans of
rescrvoits,  The ideal would be that the river should be completely con-
trolled so s o send down a constant aonual discharge distributed throughout
the year according to the seasonal requirements of the exops.

In the following discussion, which is based on two carlicr papers by the
author,b 2 seasonal varlation of Hon and crop requircmenls within the
year ate not comsidered, sinee only anmial torals are used. The effets
of these must be congidered separately and added to these dealt with here.

Given a series of anaual discharges recorded for a past period, it is easy
to caleulate what storage would have been enough to equalize the flow
and send down the mean discharge every vear hroughout e perivd.
Much more than this is needed, however, before a policy can be laid down
for whe future, singe the pas is never exactly repeated,
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Long range dependence (LRD)

Long-range dependency is a phenomenon that may arise in the analysis of spatial or
time series data. It relates to the rate of decay of statistical dependence, with the
implication that this decays more slowly than an exponential decay, typically a
power-like decay. LRD is often related to self-similar processes or fields.
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Famous random fields in Geostatistics

The Gneiting family of space-time covariance functions.
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Famous random fields in Geostatistics

The Gneiting family of space-time covariance functions.

2
K (h,u) = o*y(u?) % (w”(ﬁ'b’m) J

« Gaussian
+ Stationary

Other families, Dagum, Cauchy, ...



In & Mo Tools Ex & Un Density of the Solution The Hermite case

Stochastic Partial Differential Equations

Let L be a partial differential operator, e.g. L = 5722 — Ax, t €]0,T], x € R, and

u(t,x) = (u1(t,x),...,uq(t,x)) € R the solution of the system

Lui(t,x) =bi(u(t,x))+ Z;‘l:1 o1,5(u1(t, x))W9 (¢, x)

Lug(t,x) = ba(u(t,x)) + 5_; 0,5 (u(t, %)W (t,x).

References
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Stochastic Partial Differential Equations

Let L be a partial differential operator, e.g. L = 5722 — Ax, t €]0,T], x € R, and

u(t,x) = (u1(t,x),...,uq(t,x)) € R the solution of the system

Lui(t,x) =bi(u(t,x))+ Z;‘l:1 o1,5(u1(t, x))W9 (¢, x)
Lug(t,x) = ba(u(t,x)) + 51 oa,;(ui(t, %)W (¢, ).

- Reasonable

« Existence of solution,
+ Uniqueness

+ More than reasonable
+ Have a Probability density function.

and Gaussian Markov random fields: the stochastic partial differential equation

- F. Lindgren, H. Rue & J. Lindstrom (2011): An explicit link between Gaussian fields
approach. J
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* Consider a fluid flow with the presence of a contaminant,
* Make the balance equations for the contaminant in a arbitrary ball.
* Calculus fundamental theorem + divergence theorem.

The linear transport equation,

Oru(t,z) + b(t, z) - Vu(t,z) = 0. (1)

Emerges as a model for the concentration (density) of a pollutant in a flow. It is a
particular case of the advection equation when the flow under consideration is
incompressible (i.e. has zero divergence).
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The transport equation

* Consider a fluid flow with the presence of a contaminant,
* Make the balance equations for the contaminant in a arbitrary ball.
* Calculus fundamental theorem + divergence theorem.

The linear transport equation,

Oru(t,z) + b(t, z) - Vu(t,z) = 0. (1)

Emerges as a model for the concentration (density) of a pollutant in a flow. It is a
particular case of the advection equation when the flow under consideration is
incompressible (i.e. has zero divergence).

- C.M. Dafermos (2010): Hyperbolic conservation laws in continuum physics.

- J. Duan, H. Gao and B. Schmalfuss (2002): Stochastic dynamics of a coupled
atmosphere-ocean model.

- PL. Lions (1996): Mathematical topics in fluid mechanics, Vol. I: incompressible
models.

- P.L. Lions (1998): Mathematical topics in fluid mechanics, Vol. Il: compressible
models.

- B. Perthame (2007): Transport Equations in Biology.
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The stochastic linear transport equation

We analyse the following one-dimensional Cauchy problem: given an initial-data g,
find u(t, z; w) € R, satisfying

Oru(t, Ty w) + Ozu(t, v;w) (b(t,x) + %(u)) =0, @

u(to, ) = up(x),

with (¢,2) e Ur = [0,T] xR, w € Q,b: [0,T] x R — R a given vector field, and the
noise (Zt):>o is a stochastic process with zero quadratic variation.
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The stochastic linear transport equation

We analyse the following one-dimensional Cauchy problem: given an initial-data g,
find u(t, z; w) € R, satisfying

Oru(t, z; w) + Ogu(t, z;w) (b(t,w) + %(u)) =0, @

u(to, ) = up(x),

with (¢,2) e Ur = [0,T] xR, w € Q,b: [0,T] x R — R a given vector field, and the
noise (Zt):>o is a stochastic process with zero quadratic variation.

- E. Fedrizzi & F. Flandoli. (2013): Noise prevents singularities in linear transport
equations.

- F. Flandoli, M. Gubinelli & E. Priola, (2010): Well-posedness of the transport equation
by stochastic perturbation.

- H. Kunita (1984): Stochastic differential equations and stochastic flows of
diffeomorphisms.
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Stochastic Calculus via regularization

* Tis afixed positive real number.
° (Xt)¢>0 acontinuous process.

* (Y3):>0 a process with paths in L} (RT), i.e. for any b > 0, fé’ |Y:|dt < co a.s.

loc

t _
IO(G,Y,dX)(t):/O std& t>0. ®3)

Then, the simmetric integral is defined as
t
/ Ysd® X5 := lim I%(e, Y, dX)(t), (4)
0 e—0

for every t € [0, T, provided the limit exists in the ucp sense (uniformly on compacts in
probability).
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Stochastic Calculus via regularization

The covariation or generalized bracket, [ X, Y]; of two stochastic processes X and Y is
defined as the limit ucp when e goes to zero of

1 t
[X,Y]ee = g/ (Xote — Xs) (Yoqe — Ys)ds, t>0.
0

Note that [ X, Y] coincide with the classical bracket when X and Y are
semimartingales.

F. Russo & P, Vallois (1993): Forward, backward and symmetric stochastic integration.
F. Russo & P. Vallois (2007): Elements of stochastic calculus via regularization. J
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Malliavin Derivative

* M areal separable Hilbert space.
* (9,.A,P) a probability space.
* (B(¢), ¢ € H) acentred Gaussian family of random variables such that

E(B(p)B(¥)) = (¢, ¥)n

* S the space of smooth functionals of the form F' = g(B(¢1), ..., B(pn))-
(g is @ smooth function with compact support and ¢; € H,i =1, ...,n)

For functions F' € S the malliavin derivative operator D, acts in the form

885 (B(g1), ..., Bpn))pi-

n
DF = Z
=1
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Malliavin Derivative

The operator D is closable from S into L2($2; H), and accept the following chain rule:

Proposition

If p : R — R is a continuously differentiable function and F' € D'-2, then p(F) € D12
and
Dy(F) = ¢'(F)DF. 5)

where D' which is the closure of S with respect to the norm

I, = EF? + E||DF|3,.

D. Nualart (2006): Malliavin Calculus and Related Topics. J
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Weak solution

Definition

A stochastic process u € L (2 x [0, T] x R) is called a weak LP—solution of the
Cauchy problem (2), if for any ¢ € C2°(R), fR u(t, z)e(x)dz is an adapted real valued
process which has a continuous modification, finite covariation, and for all ¢ € [0, T7,
P-almost surely

[utare@is = [ uare o+ [ [ us) o a)onete) deds
+ /ot/ﬂ& u(s, ) V' (s, z) o(x) dmder/ot/H; u(s, ) ep(x) dad® Zs

where b/ (s, z) denotes the derivative of b(s, z) with respect to the spatial variable z,
and the integral d°Z is a symmetric integral defined via regularization (see (4)).
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Weak solution

Proposition

Assume thatb € L*>° ((

,T); CE(R)). Then there exists a C*(R) stochastic flow of
diffeomorhism (X, ¢, 0 <s <t

))-
< T), that satisfies
t
Xon(z) = o + / b, Xou(2))dut + Zt — Zs ®)
S

for every x € R®. Moreover, given ug € L™ (R), the stochastic process
u(t,z) == uo(X; '(z)), te[0,T],z€R 7)

is the unique weak L>° —solution of the Cauchy problem 2, where X := Xq ; for every
t € [0,7T].
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Weak solution

Lemma

Assume b € L> ((0,T); CE(R)) N C ((0,T) x R). Then the inverse flow satisfies the
backward stochastic equation

t
Ysi(z) =2 — / b(r, Yr¢(x))dr — (Zt — Zs) (8)

forevery0 < s <t < T and for every x € R.
Moreover, Y is the unique process that satisfies (8) with Y s(z) = z.
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Weak solution

Lemma

Assume b € L> ((0,T); CE(R)) N C ((0,T) x R). Then the inverse flow satisfies the
backward stochastic equation

t
Ysi(z) =2 — / b(r, Yr¢(x))dr — (Zt — Zs) (8)

forevery0 < s <t < T and for every x € R.
Moreover, Y is the unique process that satisfies (8) with Y s(z) = z.

Remark

Ifwe set Ry »(u) = Yi—u,t(z), Bi(a,x) = —b(t — a,x) and Zy s = —(Zy — Zy—v,) for
t € [0,T), u € [0,t], and z € R, then we have

Riz(u) =z + /Ou Bi(a, Rtz (a))da + Zy t. 9)

v
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Outline

Density of the Solution
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Malliavin differentiability of the inverse flow

be L™ ((0,T);CE(R)) N C((0,T) x R). (10)
The noise Z is a zero quadratic variation process, adapted to the filtration
(Ft)efo,r) such that Z; € D12 for every t € [0, T].

sup E|Zi|> < oo and sup IE||DZtHL2( ) < o°- (11)
t€[0,7] t€[0,T]

Lemma
Under hypothesis (10) and (11), the equation (9) has an unique solution. J




In & Mo Tools Ex & Un Density of the Solution The Hermite case References

Malliavin differentiability of the inverse flow

Proposition

Assume (10) and (11). Then, forz € R,t € [0,T],u < t, the random variable R .. (u)
given by (9) belongs to D'»2. Moreover, the Malliavin derivative of Ry .. (u) satisfies

u
D Re.o(u) = / Bl(5, Re.o(5)) Do Re.o()ds + Do Zu.s (12)
0

for every o < t.
v
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Density of the Solution

Proposition

Assume that b satisfies (10), Z satisfies (11) and'Y be given by (8). Then for every
s<t,a<tandz € R, we have

DaYer(z) = 1gr)(a)e” SEV (u, Yyt (2))du

t ’
></ Y (u, Yut (2)) Do (Zu ¢ )ela ¥ (0 Yre(@)dr gy,
S

+ Da(Zs,t). (13)
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Density of the Solution

Proposition
Fix0 < s <t<T.Assume (10) and (11). In addition we will suppose that for every
0<s<t<T

T
||DZtH2LQ([t_syT]) = (Do Zt)%doc > 0, almost surely. (14)
—s

Then the law of Y (x) is absolutely continuous with respect to the Lebesgue measure.
v




In & Mo Tools Ex & Un Density of the Solution The Hermite case

Density of the Solution

References

Theorem

Let u(t, x) be the solution to the transport equation (2). Assume that ug € C*(R) such
that there exists C > 0 with (u(z))? > C for every z € R. Then, for every t € [0, T
and for every x € R, the random variable u(t, x) is Malliavin differentiable. Moreover
u(t, z) admits a density with respect to the Lebesgue measure.
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The Hermite Process

We denote by (Zt(""’H >)tE[O,T] the Hermite process with self-similarity parameter
H € (1/2,1). Fort € [0,T] it is given by

t t t , ,
Z(@H) :d(H)/ / AWy, ...dW,, </ HKH (uy1)... 00 KH (u,yq)du)
0 0 Yy1V...Vyq
the kernel K'H (t, s) has the expression

t
KH (t,5) = CH51/2—H/ (u— s)H=3/2,H=1/2 g,

s

B(2—2H,H—1/2)
t > s, the kernel’s derivative is

1/2
wheret > sand cy = (%) / and B(-, -) is the Beta function. For

—(t,8) =cHm

H 1/2—H
() -yt
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ZH is a zero quadratic variation process.
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ZH is a zero quadratic variation process.

Lemma

The Hermite process satisfies (11) and (14).
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