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Classic Data Assimilation: For NWP we need to
improve observations, analysis scheme and model
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New Data Assimilation: We can also use DA
to improve observations and model
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The simplicity and power of EnKF should encourage the use of

DA for improvements beyond its main goal
L

Combine optimally observations and model forecasts
(mostly done! ©)

 We should also use DA to:
Improve the observations

Improve the model
 Improve the models by parameter estimation

Example: Estimate the surface carbon fluxes as evolving
parameters.

e Earth system models used by IPCC have many sub-models, but
they don’t include the Human System, which totally dominates
the Earth system.

We should do DA of the two-way coupled Earth System-
Human System, and use DA for parameter tuning




LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations
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LETKF: Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at
the central grid red dot

All observations (purple
diamonds) within the local
region are assimilated

The LETKF algorithm can be described in a single slide!



Local Ensemble Transform Kalman Filter (Hunt et al, 2007)

Globally: 5
X’ =M (x” )
Forecast step: .k AN W
Analysis step: construct ¥’ — [Xf _x? .. |Xi( _ ib];

v, =&)Y =y -y |y -Y]

Locally: Choose for each grid point the observations to be used,
and compute the local analysis error covariance and
perturbations in ensemble space:

P =[(K-)I+Y'R'Y] ;W' =[(K - 1)P]"

Analysis mean in ensemble space:W* = P‘'Y "R (y’ — V")
and add tow“ to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
X’ = XiW" + X Gathering the grid point analyses forms the new
global analyses. Note that the the output of the LETKF are
analysis weights W’ and perturbation analysis matrices of
weights W°. These weights multiply the ensemble forecasts. |



Forecast Sensitivity to Observations (Langland and Baker, 2004)
FSOI in Global NWP

Met Office
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Can we identify bad observations?

FSOI in Global NWP

Met Office
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1) Improve the observations: Ensemble Forecast

Sensitivity to Observations and Proactive QC

I —E—C(OIE
e Kalnay et al. (2012) derived EFSO.

 Otaetal.(2013) tested 24hr GFS forecasts and showed
EFSO could be used to identify bad obs.

* D. Hotta (2014): EFSO can be used after only 6 hours, so
that the bad obs. can be collected and withdrawn, with
useful metadata, so they can be improved. The analysis
is corrected with EFSO.

* We call this Proactive QC, much stronger than QC.
 Hotta also showed EFSO can be used to tune R

* Tse-Chun Chen (2015) tested impact of EFSO/PQC over 5
day forecasts: PROMISING RESULTS




Hotta (2014)

Feb. 18 O6UTC, near the North Pole
(Ota et al. 2013 case). Bad obs: MODIS WINDS

FT=06 hr.
2012020618
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Can identify the bad observations after only 6 hours!



Improve observations:
Proactive QC: Find and delete the obs that make

the 6hr forecast worse usinﬁ EFSO

Obs Impacts Type=259, EFT=06hr
Dr. Daisuke Hotta (2014): N P ‘ '
EFSO is able to find whether et
each observation improves
(blue) or makes the 6hr
forecast worse (red)
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In one month: 20 cases of skill dropout due to flawed
observations that passed the operational QC

Tse-Chun Chen: classify the 20 cases into

11 SIGNIFICANT cases, where EFSO estimates
that withdrawing the flawed observations
reduces the 6hour forecast error by more
than 20% (in Total Moist Energy)

— ATME>20%

* 9 NON-SIGNIFICANT CASES, with
ATME<20%



5-day reduction of total moist energy of the forecast error

11 significant cases
Average MTE Relative Improvement (%)
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5-day reduction of total moist energy of the forecast error

9 non-significant cases
Average MTE Relative Improvement (%)
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2) Ensemble Forecast Sensitivity to Error Covariances
Hotta (2014)

 Daescu and Langland (2013, QJRMS)
proposed an adjoint-based formulation of forecast

sensitivity to B and R matrix.

e Daisuke Hotta formulated its ensemble equivalent for R
using EFSO by Kalnay et al. (2012) :

Oe Oe 1 _ a — oa
lﬁRLj ~ 0yi G TR [R 1YOXE|1;)C (et|0 +et|_6)L [R 0y ]j

where z i1s an ”intermediate analysis increment” in observation space



R-sensitivity results from GFS / GSI-LETKF hybrid

Averaged R-sensitivity Averaged R-sensitivity
Moist .Energy norm, EFT=6hr Moist Energy norm, EFT=24hr
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Aircraft, Radiosonde and AMSU-A: large positive sensitivity
MODIS wind : negative sensitivity

- Tuning experiment:
 Aircraft, Radiosonde and AMSU-A: scale s,2 by 0.9
* MODIS wind: scale s,2 by 1.1



Tuning Experiment: Result
EFSO before/after tuning of R
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Aircraft, Radiosonde and AMSU-A: significant improvement of EFSO-
impact

|ASI: Significant improvement in EFSO although its error covariance is
untouched!

Very promising results for quick testing of new observing systems!



4) Improve the models: Parameter estimation

and estimation of bias using DA

I oE—EC(‘"yhEIm———
* Model tuning on long time scales should be done with
EnKF parameter estimation.

 Kang et al., JGR, 2011, 2012 showed that evolving
surface carbon fluxes can be estimated accurately at the
model grid resolution from simulated atmospheric CO2
observations (OCO-2) as evolving parameters.

* Another approach is the use of analysis increments to
estimate model bias (Greybush et al., 2012, Mars) and
even state-dependent model bias (e.g., El Nifio bias), as
in Danforth et al. 2007.



Surface carbon fluxes CF from atmospheric
assimilation of meteorological variables
and CO2 obtained as evolving parameters
(OSSE). Kang et al., JGR, 2011, 2012
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OSSE
Results
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We succeeded in estimating time-evolving CF at model-grid scale
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5) How can we estimate and correct Big Model bias?
I —__— ————

 The best current estimate of nature is the Analysis.

* The First Guess (6hr forecast) contains the initial
forecast errors (before they grow nonlinearly).

* Analysis - First Guess = Analysis Increments (Al) =
- Initial (linear) model errors.

* The time average of Al is the best estimate of the
error growth due to model bias in 6 hr.

e Danforth, Kalnay and Miyoshi (DKM-2007) estimated
the 6hr errors of the SPEEDY model.

e Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast
(started from reanalysis R1) minus the reanalysis.



DKM-2007 results

* Estimated the monthly mean 6hr forecast bias

* Corrected the model by adding (—bias/6hr) to each
variable time derivative, at each grid point.

Results

* The bias correction after 3 or 5 days was the same as
the best a posteriori bias correction.

e But the random errors were smaller.

e The dominant EOFs of the 6hr debiased forecast errors
were the errors in the diurnal cycle.

* |t was possible to estimate the systematic errors for
anomalies (e.g., ENSO, lows over land or over ocean)



The model corrected online did same or better
than the model statistically corrected off-line
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And the random errors were significantly smaller!

Original Model Online Correction
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How to find the diurnal cycle model errors using EOFs

from a Reanalysis
(Danforth et al., 2007)

Estimated the average SPEEDY model error (bias) by
averaging over several years the 6 hour forecast

(started from reanalysis) minus the reanalysis.

Then they computed the EOFs of the anomaly in
the model error, and found two dominant EOFs
representing the model error in representing the
diurnal cycle:
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Implications for improving the model bias

e The DKM2007 method gave very good results with the SPEEDY
model, using R1 as an approximation of the true atmosphere.

* The -bias/6hr was added to the SPEEDY time derivatives (u,v,T,p,).

* This corrected the bias, getting similar or better results than an a
posteriori bias correction! In addition, random forecast errors were
also reduced.

* |t was also used to improve the diurnal cycle and to find the state
dependent systematic errors (e.g., during an El Nifio).

* |t can be tried on the GFS (or the CFS!) taking advantage of the
Analysis Increments, i.e., the difference between the Analysis and
the Forecast.

* Dr. Fanglin Yang (NCEP) very kindly provided us with 2012, 2013, and
2014 Analyses and Forecasts.




First results: 2014 Analyses, Forecasts and Als
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P.is too low over continents, too high over oceans in both winter and summer.



Seasonal Analysis Increment 2012-2013-2014
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Seasonal Analysis Increment 2012-2013-2014
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Seasonal Analysis Increment 2012-2013-2014
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How do we plan to reduce model bias?

I |
* Check the robustness of the monthly or seasonal
averaged Al (2014 vs. 2013 vs. 2012) vV

* Perform exploratory low resolution (T254)
experiments correcting the perceived model bias
by adding Al/6hr to each variable time derivative.

* Test the impact on the forecast skill.

* Explore the diurnal cycle of the Al. Test if the
diurnal cycle errors can be reduced.

* If successful, the Al bias correction will also guide
the development of the physical
parameterizations.



SUMMARY 1

* Applications of EnKF-based data assimilation can
go beyond providing the best initial conditions:

* They can improve both observations and

models:

* Improve observations with EFSO and PQC.

* Improvet
* Improvet
* Improve t

ne Obs Error Covariance R
ne model parameters

ne models by using the Analysis

ncrements to correct the models’ bias



The Human and Earth System models
should be fully coupled, and could be
tuned with Big Data DA
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Earth and Human Systems

* The Earth System is completely dominated by
the Human System.

 |In order to understand their interactions we

need to couple them bidirectionally, i.e., with
feedbacks.

e Currently, IPCC models and even Integrated
Assessment Models do not couple population.

Instead, population is exogenously obtained
from UN projections.



The development of climate models, past, present and future

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?
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Growth of Population and GDP/Capita:

Consumption of Resources is their Product!
| ——
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Why was the population able to grow so fast since the

1950’ s?
.

Two reasons:
1) Sanitation and Antibiotics (Public Health — living longer)
2) Use of fossil fuels in agriculture starting in the 1950’ s:

- fertilizers, pesticides, irrigation, mechanization (Green
Revolution).

1950 to 1984: production of grains increased by 250% and the
population doubled

Without fossil fuels population would be much smaller!

. Growth in grain production is now flattening out

. Industrial farming is destroying forests, soil

. Urban and suburban sprawl is overrunning best farmland

This is not sustainable: “We are drawing down the stock of natural
capital as if it was infinite” (Herman Daly)



Standard Neoclassical Economic Model

As Herman Daly, Robert Costanza, and other scholars in the field of Ecological Economics describe,

The standard Neoclassical Economic Model does not account for:
e Inputs (resources)

Outputs (pollution)

Stocks of Natural Capital

* Dissipation of Energy (i.e., a Perpetual Motion Machine)

* Depletion, Destruction or Transformation of Matter

Therefore, no effects on the Earth System, and No Limits to Growth.




Realistic Ecological Economic Model (Herman Daly)

* Incorporates INPUTS, including DEPLETION of SOURCES
* Incorporates OUTPUTS, including POLLUTION of SINKS

Earth System

Sources:
Stock of Natural Ca
Flows of Energy

HumanlEconomy,

0il, Coal, Gas,
Nuclear, Biomass,
Renewables, etc

2. Matter
Soil, Minerals,
Lumber, and
Other Material
Resource




“Empty World” Model

* Throughout most of human history, the Human Economy was so small relative to
the Earth System, that it had little impact on the Sources and Sinks.
* In this scenario, the standard isolated economic model might have made sense.

Earth System




“Full World” Ecological Economic Model

* Today, the Human Economy has grown so large, it has very large Effects on the Earth
System, Depleting the Sources and Filling the Sinks. It is clear that growth cannot
continue forever.

Earth System

Human

Economy




Schematic of Earth System - Human System Feedbacks
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Human and Nature Dynamical model (HANDY)
with Rich and Poor: for thought experiments

Just 4 equations!

Total population: Elite + Commoners X=X + XC
Nature equation: (only the Commoners produce)
y = y(A —y)—Production 0 x,y
Wealth is managed by the Elites. Inequality factor K ~ 100
W = Production-Commoner consumption-Elite consumption = 6x .y — sx,. — KX,

Population equations: death rate(Xdepends on whether there is enough food:

famine au N

Death rate xC — _aCxC + ﬁCxC

xE = —OpX, + ﬁE'xE

healthy a, [—r-mememe

w

1/k 1 w= "
The rich Elite accumulates wealth from the work of everyone else (here referred to as the
Commoners). When there is a crisis (e.g., famine) the Elite can spend the accumulated

wealth to buy food and survive longer.



State Variables (Stocks) and Flows in HANDY1

Deaths
(increase if there is famine)

Births

E—

Depletion

Regeneration

Production
(= Depletion) Consumption
) Wealth
-XcS - XgSK

k=100



Experiments for an Egalitarian Society (K=1)

1 Xy Egalitarian Society: Soft Landing to Optimal Equilibrium
1A T
4 A

Commoners
Wealth
Nature

Optimal depletion

0 100 200 300 400 500 600 700 800 900 1000
Time (Year)

With optimal depletion an egalitarian society reaches
equilibrium at the maximum Carrying Capacity



What happens 1f we introduce Inequality?
Optimal depletion, but K=100

1 Xy Egalitarian Society: Soft Landing to Optimal Equilibrium ? >§M Unequal Society: Small initial seed of Elites

U - What will happen?

43 | Carrying 40,
Capacity Commoners
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Up until t = 500 years,
both scenarios show the exact same dynamics.



An otherwise sustainable society will collapse
if there 1s high mnequality (x = 100).
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An otherwise sustainable society will collapse
if there 1s high mnequality (x = 100).

6 Xu Unequal Society: Type-L Collapse (Scarcity of Labor)
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What happens 1f we have both high inequality
and high depletion rate?



Typical Collapse: High Depletion Rates and High

Inequality at the same time
?}(LM Unequal Society: Irreversible, Type-N (Full) Collapse
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Typical Collapse: High Depletion Rates and High

Inequality at the same time
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Is there any hope for an unequal society to survive?



If we reduce the depletion per capita and inequality, and
slow down the population growth, it is possible to reach a
steady state and survive well.

i ;‘LM Unequal Society: Soft Landing to Optimal Equilibrium
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Reaching this equilibrium requires changes in :
* Reduce depletion per capita

* Reduce inequality (x = 10) (as estimated by Daly)
* Reduce birth rates



Could a collapse be prevented if we have large
stocks of Nonrenewable Energy?
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This is the classic HANDY1 full
collapse scenario, with only
regenerating Nature

What happens
when we add
fossil fuels?

We then add to the
regenerating Nature a
nonrenewable Nature



Impact of adding fossil fuels (nonrenewable
energy resources)
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The collapse is postponed by ~200 years and the
peak population increases by a factor of ~20!
Reminiscent of the Industrial Revolution!



Schematic of Earth System - Human System Feedbacks
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Summar

« We are using up in 200+ years the fossil fuels that nature
accumulated over millions of years

* The use of fossil fuels for agriculture increased food production
and population after 1950.

« HANDY | “thought experiments” show that reducing:
1. Social inequality
2. Population growth

3. Depletion per capita allow society to become sustainable.

« HANDY Il: Adding non-renewables

1. Increases maximum population by ~20 times.
2. Postpones collapse by about 200-300 years

3. If the transition from fossil to renewables is done early enough, it is
possible to avoid the collapse.

We are NOT modeling the coupled Earth-Human System
* We need to couple them to provide feedbacks
« Data assimilation can help tune the big coupled maglels



