Graph Functional Methods for Climate Partitioning

Mathilde Mougeot

with D. Picard, V. Lefieux*, M. Marchand*

Université Paris Diderot, France *Réseau Transport Electrique (RTE)

Buenos Aires, 2015

Mathilde Mougeot (Paris Diderot University)

BA& Env. 2015

Introduction

Arpège, French Meteorological data

At n = 259 locations, we observe

- Temperature and Wind data
- for 14 years
- with an hourly sample rate
- d = 122712 points for raw data
- X matrix of data (n x d) n < d

イロト イポト イヨト イヨト

Introduction

Arpège, French Meteorological data

At n = 259 locations, we observe

- Temperature and Wind data
- for 14 years
- with an hourly sample rate
- d = 122712 points for raw data
- X matrix of data (n x d) n < d

Mathilde Mougeot (Paris Diderot University)

2 / 21

Objective and Questions :

RTE requirement

- Segmentation of the French country using meteorological data
- Temperature and/or Wind
- To study the Between Year variability, we focus on
 - 14 x one year of data (n=259 x d=8760-daily) (vs 14 years of data)

イロト 不得 トイヨト イヨト 二日

Objective and Questions :

RTE requirement

- Segmentation of the French country using meteorological data
- Temperature and/or Wind
- To study the Between Year variability, we focus on
 - 14 x one year of data (n=259 x d=8760-daily) (vs 14 years of data)

Methodological & Statistical Questions :

- High dimensional data n = 259, d >> n
- to avoid the curse of dimensionality Features extraction, Smoothing, and/or temporal aggregation
- Clustering algorithms :
 - ? Hierarchical clustering, Kmeans, Spectral clustering among others
 - ? number of clusters
- How to aggregate the clustering results between years?

イロト 不得下 イヨト イヨト 二日

Introduction

Wind and Temperature data spots for 2014

4 / 21

Feature Extraction

Features Extraction

From Temporal time series to feature

Non Parametric Regression Principal Component Analysis

to avoid the curse of dimensionality with clustering

Mathilde Mougeot (Paris Diderot University)

BA& Env. 2015

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ の へ ()

Feature Extraction

Feature Extraction based on Non Parametric Regression

Original data are function of time observed at regular instances. For each time series at location i of size d, we observe $(X_t^i, t/d)$ where

 $X_t^i = f^i(t/d) + \epsilon_t^i,$

 f^{i} is unknow, $\epsilon^{i} \sim \mathcal{N}(0, \sigma^{2})$, $t = 1, \dots, d$. Non parametric estimation of f^{i} :

$$f^{i} = \sum_{\ell=1}^{p} \beta_{\ell}^{i} g_{\ell} + h^{i}$$

with $D = \{g_1, \dots, g_p\}$ dictionary of functions. G is the (d, p) design matrix

Mougeot et al. JRSSB, 2012

イロト イポト イヨト イヨト 二日

Feature Extraction

Feature Extraction based on Non Parametric Regression

Original data are function of time observed at regular instances. For each time series at location i of

size d, we observe $(X_t^i, t/d)$ where

 $X^i_t = f^i(t/d) + \epsilon^i_t$

 f^i is unknow, $\epsilon^i \sim \mathcal{N}(0, \sigma^2)$, $t=1,\ldots,d$.

Non parametric estimation of f^i :

$$f^i = \sum_{\ell=1}^p \beta^i_\ell g_\ell + h^i$$

with $\mathcal{D} = \{g_1, \ldots, g_p\}$ dictionary of functions.

G is the (d, p) design matrix

Mougeot et al. JRSSB, 2012

Thresholding and Sparsity :

We note $\hat{X}_{i_0}^i = \sum_{i=1}^{j_0} \hat{\beta}_{(i)}^i g_i$ with $|\hat{\beta}_{(1)}^i| \geq \ldots \geq |\hat{\beta}_{(n)}^i|$, and $\frac{||\hat{X}_{(j_0)}^i||^2}{||X^i||^2} \geq T_{NP} (= 0.95).$ Feature (Sparse) matrix :

イロト 不得 トイヨト イヨト 二日

$$Z = (Z_{i,j}) = (\hat{\beta}_{i,j})$$

Feature Extraction using Principal Component Analysis

Projection of the observations using a data driven orthonormal basis

X centered data matrix (n, d)n = 259, d >> n large

The Feature matrix (n, p) is computed by projection, $p \ll d$:

 $Z = XU_p$

 U_p is the matrix defined by the first eigenvectors of the *S*. *S* is the Variance-Covariance matrix.

イロト 不得 トイヨト イヨト 二日

Feature Extraction using Principal Component Analysis

Projection of the observations using a data driven orthonormal basis

X centered data matrix (n, d)n = 259, d >> n large

The Feature matrix (n, p) is computed by projection, $p \ll d$:

 $Z = XU_p$

 U_p is the matrix defined by the first eigenvectors of the *S*. *S* is the Variance-Covariance matrix.

$$S = \frac{1}{n} X^T X$$

 $S = U_d \Sigma_d U_d^T \text{ (SVD)}$ with $\Sigma_d = diag(\lambda_1, ... \lambda_d)$ $\lambda_1 \ge ..., \ge \lambda_d$ eigenvalues

This transformation maximizes the variance on the different axes.

How to chose p?:

p such that $\frac{\lambda_1+\ldots+\lambda_p}{\Sigma_j\lambda_j}=\mathit{T}_{pca}$ (0.95)

 \rightarrow Global linear method involving all the n=259 spots to compute U_p \rightarrow Is U_p similar between years?

Number of extracted features

Average nb. of Features for Temperature and Wind over 14 years

Temperature	day (d=365)	week (52)	month (12)
PCA 95%	12.3 (1.1)	5.65 (0.23)	3 (0.1)
PCA "leave one out"	243 (2.4)	21 (0.8)	4.68 (0.4)
NP Reg. Fourier d.	127 (3.4)	19.5 (0.8)	4.45 (0.3)
NP Reg. Haar d.	138 (3.9)	19.7 (0.9)	5.78 (0.3)

Wind	day (365)	week (52)	month (12)
PCA 90%	14 .1 (2.5)	6.36 (1.2)	2.57 (0.5)
PCA leave on out	258 (0)	32.4 (02.17)	5.17 (0.9)
NP Reg. Fourier d.	<mark>233</mark> (6.8)	31.7 (1.9)	5.14 (0.77)

- $\rightarrow\,$ Sparse representation of PCA for daily Temperature
- $\rightarrow\,$ PCA projection matrix can not be learned
- $\rightarrow\,$ Similar nb. of features for PCA and generic Fourier dico for monthly data

Clustering algorithms

Hierarchical clustering Kmeans Spectral clustering

Aggregation of clustering instances

Mathilde Mougeot (Paris Diderot University)

イロン 不得入 不良人 不良人 一度

Spectral clustering Full connected graph with *n* nodes.

Weight between two nodes (Z_i, Z_j) : $w_{i,j} = e^{\frac{-||Z_i - Z_j||_2^2}{2\mu^2}}$, μ heat parameter

Normalized Graph Laplacian :

$$L = I - D^{-1/2} W D^{-1/2}$$

$$L \in \mathbb{R}^{N imes N}$$
,
 W adjacency matrix, $D_{i,i} = \sum_j w_{i,j}$.

э

イロト 不得下 イヨト イヨト

Spectral clustering Full connected graph with *n* nodes.

Weight between two nodes (Z_i, Z_j) : $w_{i,j} = e^{\frac{-||Z_i - Z_j||_2^2}{2\mu^2}}$, μ heat parameter

Normalized Graph Laplacian :

$$L = I - D^{-1/2} W D^{-1/2}$$

$$L \in \mathbb{R}^{N imes N}$$
,
 W adjacency matrix, $D_{i,i} = \sum_j w_{i,j}$.

Ng et al. Algorithm (2002) :

Input : Fix *k* nb . clusters

- Compute the first k eigenvectors *u*₁,... *u_k* of L corresponding to the "k" smallest eigenvalues,
- ❷ let $U ∈ ℝ^{n × k}$ be the matrix of column vectors $u_1, ..., u_k$.
- Sorm the matrix *T* ∈ ℝ^{n×k} $t_{i,j} = u_{i,j} / (\sqrt{\sum_k u_{ik}^2}).$ Let $y_i ∈ R^k i^{th}$ row of T.
- ④ Cluster $\{y_i\}$, 1 ≤ *i* ≤ *n* with the k-means into clusters C_1, \ldots, C_k

Output: Clusters A_1, \ldots, A_k with $A_i = \{y_i \in C_i\}$

Kmeans Clustering

Choose k the number of clusters

- **1 INPUT** Pre specify k centroids $\overline{Z}_1 \dots \overline{Z}_k$ (k points at random)
- Reassign each item to its nearest cluster centroid
- Compute the Squared Euclidien Distance $ESS = \sum_{k=1}^{K} \sum_{c(i)=k} ||Z_i - \overline{Z}_k||^2$
- Update the cluster centroids after each assignment.
- REPEAT 2,3,4 with UNTIL no further assignment of items takes place. (or a given nb. of runs)

How to choose the number of clusters?

Many methods already in the literature : Calinsky et al. 1974, Gap Statistic Friedman et al. 2000, ... Most of them based on :

Variance Decomposition : $T = W_k + B_k$

Total Between Within

$$T = \frac{1}{n} \sum_{k} ||X_{i} - X||^{2}$$

$$B_{k} = \frac{1}{n} \sum_{k} n_{k} ||\bar{X}_{k} - \bar{X}||^{2}$$

$$W_{k} = \frac{1}{n} \sum_{k} \sum_{i_{k}}^{n_{k}} ||X_{k}(i_{k}) - \bar{X}_{k}||^{2}$$

Quantification/ modeling indicator ratio :

$$\rho_k = \frac{B_k}{T} \in [0, 1]$$

 k_0 the number of cluster is chosen such that : with $\Delta_k = \rho_{k+1} - \rho k$ $k_0 = \arg \min_k \Delta_k < 5\%$

Daily Temperature 2014

Application to segmentation

&

Numerical Results

Mathilde Mougeot (Paris Diderot University)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Stability of the number of clusters

over 14 years, for different temporal aggregation levels

Data : 14 x one year of data, Kmeans algorithm with $\rho_k < 5\%$ criteria

Wind :

vvina .				d(BoT) pcaT 0.10
	day (365)	week (52)	month (
Pca 90%	4.15 (0.3)	4.23 (0.4)	4.31 (0.	
NP Reg. Trigo	4.15 (0.3)	4(0)	4.08 (0.	
NP Reg. Haar	4.23 (0.4)	4.31 (0.4)	4.15 (0.	
			6	2 4 6 8 10

Wind day 2001 201

< □ > < □ > < □ > < = > < = >

Segmentation for 2001, 2007, 2014 daily data, n = 259Temperature

э

イロト 不得 トイヨト イヨト

Segmentation for 2001, 2007, 2014 daily data, n = 259Temperature

Wind

3

イロト 不得 トイヨト イヨト

Segmentation for 2001, 2007, 2014 daily data, n = 259Temperature

Wind

Next step : aggregation of clustering instances? Mathilde Mougeot (Paris Diderot University) BA& Env. 2015

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Aggregation of clustering instances

"Cluster Ensemble" approach :

$$A_{i,j}^{y} = \begin{cases} 1 \text{ if } (Z_{i}^{y}, Z_{j}^{y}) \text{ in the same cluster} \\ 0 \text{ otherwise} \end{cases}$$

EndFor

Averaged co cluster indicator matrices : $A \leftarrow \frac{1}{\sharp \mathcal{Y}} \sum_{y} A^{y}$

 $A_{i,j} = \begin{cases} 1 (Z_i, Z_j) \text{ always in the same cluster} \\ 0 (Z_i, Z_j) \text{ never in the same cluster} \\ (1 - A) \text{ is an affinity matrix.} \end{cases}$

"Behavior index" : $\pi_i = \frac{1}{n} \sum_j \mathbf{1}_{\{\epsilon < A_{i,j} < (1-\epsilon)\}},\ \epsilon = 0.10$

Aggregation of clustering instances

Temperature

Wind

using 14 years of daily data

Impact of clustering methods on segmentation What choice between Hierarchical clustering, Kmeans, Spectral Clustering? Temperature

Impact of Feature extraction on Clustering results Quantification on the impact of Feature extraction using a Cluster Ensemble approach :

For $T \in \{0.90, \dots 0.99\}$ 1 : Compute Feature Z, with T 2 : Features Clustering using \mathcal{M} 3 : Construct a co-cluster indicator matrix A^T

$$A_{i,j}^t = \left\{ egin{array}{c} 1 ext{ if } Z_i ext{ and } Z_j ext{ are in the same cluster} \\ 0 ext{ otherwise} \end{array}
ight.$$

EndFor

 $A \leftarrow \frac{1}{\sharp T} \sum_{t \in T} A^t$ (average indicator matrices)

$$extsf{Ratio} = rac{1}{(n(n-1)/2)} \sum_{i < j} \mathbb{1}_{0 < A_{i,j} < 1}$$

 $\mathcal{M} \in \{\text{HC, Kmeans, SC}\}$

\rightarrow Hierarchical clustering results are very sensitive to Feature extraction parameter.

Mathilde Mougeot (Paris Diderot University)

- Clustering is, at the same time,
 - an easy task (just apply a clustering method and see what happen !),
 - a very hard one (no objective functions as MSE)

イロン 不得入 不良人 不良人 一度

- Clustering is, at the same time,
 - an easy task (just apply a clustering method and see what happen !),
 - a very hard one (no objective functions as MSE)
- To be very careful with
 - potential high dimensional data as the ℓ_2 norm may not be meaningfull
 - the robustness on the results provided by the pre treatments (smoothing)

イロト 不得 トイヨト イヨト 二日

- Clustering is, at the same time,
 - an easy task (just apply a clustering method and see what happen !),
 - a very hard one (no objective functions as MSE)
- To be very careful with
 - potential high dimensional data as the ℓ_2 norm may not be meaningfull
 - the robustness on the results provided by the pre treatments (smoothing)
- We propose a methodology based on :
 - Feature extraction (PCA, Non Parametric Regression)
 - Clustering a set of data (split the initial time series into 14 one year intervals)
 - Aggregate the clustering with alike "Ensemble method" and Spectral clustering

イロト 不得 トイヨト イヨト 二日

- Clustering is, at the same time,
 - an easy task (just apply a clustering method and see what happen !),
 - a very hard one (no objective functions as MSE)
- To be very careful with
 - potential high dimensional data as the ℓ_2 norm may not be meaningfull
 - the robustness on the results provided by the pre treatments (smoothing)
- We propose a methodology based on :
 - Feature extraction (PCA, Non Parametric Regression)
 - Clustering a set of data (split the initial time series into 14 one year intervals)
 - Aggregate the clustering with alike "Ensemble method" and Spectral clustering
- Work still in progress
 - to quantify the benefits of NP regression modeling compared to PCA
 - To cluster at the same time Temperature and Wind data

Thank you for your attention

イロト イポト イモト イモト 二日