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Introduction

Arpege , French Meteorological data

At n = 259 locations, we observe
- Temperature and Wind data

- for 14 years

- with an hourly sample rate

- d =122 712 points for raw data
- X matrix of data (nxd) n< d
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Introduction

Objective and Questions :

RTE requirement
e Segmentation of the French country using meteorological data
e Temperature and/or Wind

e To study the Between Year variability, we focus on
e 14 x one year of data (n=259 x d=8760-daily) (vs 14 years of data)
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Introduction

Objective and Questions :

RTE requirement
e Segmentation of the French country using meteorological data
e Temperature and/or Wind

e To study the Between Year variability, we focus on
e 14 x one year of data (n=259 x d=8760-daily) (vs 14 years of data)

Methodological & Statistical Questions :

e High dimensional data n =259, d >> n

e to avoid the curse of dimensionality
Features extraction, Smoothing, and/or temporal aggregation

o Clustering algorithms :

e ? Hierarchical clustering, Kmeans, Spectral clustering among others
e ? number of clusters

e How to aggregate the clustering results between years?

Mathilde Mougeot (Paris Diderot University) BA& Env. 2015



Introduction

Wind and Temperature data spots for 2014
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Feature Extraction

Features Extraction

From Temporal time series to feature
Non Parametric Regression

Principal Component Analysis

to avoid the curse of dimensionality with clustering

Mathilde Mougeot (Paris Diderot University) BA& Env. 2015



Feature Extraction

Feature Extraction based on Non Parametric Regression

Original data are function of time ob-

served at regular instances.

For each time series at location i of

size d, we observe (X/,t/d) where
Xi = fi(t/d) + ¢,

7 is unknow, ¢ ~ N(0,0?),
t=1,...,d.
Non parametric estimation of ' :

fl=30_1Bge+H
with D = {gi,...,8,} dictionary of
functions.

G is the (d, p) design matrix

Mougeot et al. JRSSB, 2012
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Feature Extraction

Feature Extraction based on Non Parametric Regression

Original data are function of time ob-
served at regular instances.

For each time series at location i of
size d, we observe (X/, t/d) where

Xt =fi(t/d)+ e,

7 is unknow, ¢ ~ N(0,0?),
t=1,...,d.
Non parametric estimation of ' :

fr=>20_1 B +h

with D = {g,...
functions.
G is the (d, p) design matrix

,&p} dictionary of

Mougeot et al. JRSSB, 2012
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OLS : 3" = argmin, || X' — GB[|?
Thresholding and Sparsity :

We note X! = j:‘]zl Bb)gj
with |5l > ... > [Bj,,1, and

)'Zi_ 2
% > Tnp(=0.95).

Feature (Sparse) matrix :

Z=(Z;)=(Bi))
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Feature Extraction

Feature Extraction using Principal Component Analysis

Projection of the observations using a data driven orthonormal basis

X centered data matrix (n, d)
n =259, d >> n large

The Feature matrix (n, p) is computed
by projection, p << d :

Z = XU,
U, is the matrix defined by the first

eigenvectors of the S.
S is the Variance-Covariance matrix.
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Feature Extraction

Feature Extraction using Principal Component Analysis

Projection of the observations using a data driven orthonormal basis

S=1XTx
X centered data matrix (n, d)
n=259, d >> n large S = UsxqU] (SVD)
with X, = diag(\1, ... \g)

The Feature matrix (n is computed .
(n.p) P A1 > ..., > A4 eigenvalues

by projection, p << d :

This transformation maximizes

Z=X . .
Up the variance on the different axes.
U, is the matrix defined by the first How to chose p? :
eigenvectors of the S.
: ; : : At HA
S is the Variance-Covariance matrix. p such that % = Tpea (0.95)

— Global linear method involving all the n = 259 spots to compute U,
— Is U, similar between years ?
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Feature Extraction

Number of extracted features

Average nb. of Features for Temperature and Wind over 14 years

Temperature day (d=365) week (52) month (12)
PCA 95% 123(11) 565(023) 3(01)

PCA "leave one out” 243 (2.4) 21(0.8) 4.68 (1 0.4)
NP Reg. Fourier d. 127 ( 3.4) 195(08) 4.45(0.3)

NP Reg. Haar d. 138 (3.9) 19.7(09) 5.78(0.3)
Wind day (365)  week (52) month (12)
PCA 90% 141(25) 636(12) 257 (05)

PCA leave on out 258 (0) 32.4 (02.17) 5.17(0.9)
NP Reg. Fourierd. 233 (6.8) 317 (1.9) 5.14 ( 0.77)

— Sparse representation of PCA for daily Temperature
— PCA projection matrix can not be learned

— Similar nb. of features for PCA and generic Fourier dico for monthly data
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Clustering Algorithm

Clustering algorithms

Hierarchical clustering
Kmeans
Spectral clustering

Aggregation of clustering instances
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Clustering Algorithm

Spectral clustering
Full connected graph with n nodes.

Weight between two nodes (Z;, Z;) :
—11Z;=z113

wij=e

1 heat parameter

Normalized Graph Laplacian :

L=1—D2wp-12]|

L c RNXN
W adjacency matrix, D;; = Zj wj ;.
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Clustering Algorithm

Spectral clustering
Full connected graph with n nodes.

Weight between two nodes (Z;, Z;) :
—11Z;=z113

wij=e

1 heat parameter

Normalized Graph Laplacian :

L=1—D2wp-12]|

L c RNXN
W adjacency matrix, D;; = ZJ. wj ;.
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Ng et al. Algorithm (2002) :

Input : Fix k nb . clusters

@ Compute the first k eigenvectors
uy,...ux of L corresponding to
the "k" smallest eigenvalues,

@ let U € Rk be the matrix of
column vectors uq, ..., Ug.

® Form the matrix T € Rk

tij = uij/(\/ 2k u7)-

Let y; € R* ith row of T.

@ Cluster {y;}, 1 < i < n with the
k-means into clusters Gy, ..., Cx

Output : Clusters Ay, ..., Ak
with A; = {y,- € C,}



Clustering Algorithm

Kmeans Clustering

Choose k the number of clusters

@ INPUT Pre specify k centroids
Zy ... Z (k points at random)

@® Reassign each item to its nearest
cluster centroid

® Compute the Squared Euclidien
Distance B _
ESS =% k1 Zc(i):k 1Zi = ZkHz

® Update the cluster centroids
after each assignment.

©® REPEAT 2,3,4 with UNTIL no
further assignment of items takes
place. ( or a given nb. of runs)
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Applications

How to choose the number of clusters?

Many methods already in the literature :
Calinsky et al. 1974, Gap Statistic Friedman
et al. 2000, ... Most of them based on :

Variance Decomposition : T = W) + By

Total T:%Z;HX:' j)_(||2_
Between By = %Ek || Xee — X| |2 _
Within Wi =237 5™ [| X (i) — X2

Quantification/ modeling indicator ratio :

pk:BTEE[Ov]-]

ko the number of cluster is chosen such that :
with Ag = pri1 — pk
ko = argmin, Ay < 5%

Mathilde Mougeot (Paris Diderot University) BA& Env. 2015

Wind 2014 pcags
BoT for different clustering methods.

Daily Temperature 2014



Applications

Application to segmentation

&

Numerical Results
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Applications

Stability of the number of clusters

over 14 years, for different temporal aggregation levels

Data :

14 x one year of data,
Kmeans algorithm with p, < 5% criteria

Temperature :
day (365) week (52) month (12)
PCA 95% 5 (0) 49(02) 4.7(04)
NP Reg. Trigo 5 (0) 48 (0.4) 4.7(0.4)
NP Reg. Haar 5 (0) 4.8 (0.4) 4.7(0.4)
Wind :
day (365) week (52) month (. :
Pca 90% 415(03) 423(04) 431(0%
NP Reg. Trigo 4.15(03) 4(0) 4.08 (0.,
NP Reg. Haar  4.23(0.4) 431(04) 4.15(0.

Mathilde Mougeot (Paris Diderot University)
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Applications

Segmentation for 2001, 2007, 2014 daily data, n = 259

Temperature
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Applications

Segmentation for 2001, 2007, 2014 daily data, n = 259

Temperature

Wind

Kmeans 4 ()
Wind day 2001 Thres 0.05 (dicoTA)
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Applications

Segmentation for 2001, 2007, 2014 daily data, n = 259

Temperature

Wind

Kmeans 4 ()
Wind day 2001 Thres 0.05 (dicoTA)

Next step : aggregation of clustering instances ?
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Applications

Aggregation of clustering instances

"Cluster Ensemble” approach :
Spectral Clustering :

—(1-A; ;)
_ 2
wij=e =,

For y ¢ Y = {2001, ...,2014}

1 : Feature extraction Z” for year y

2 : Clustering using M, M € {HC, Kmeans, SC}

3 : Construct a co-cluster indicator matrix A”

Clustering Aggregation (proba0.90) Kmeans 5
Temp d ar)

fay (dicoPFye:

Al = { 1if (Z7,Z}) in the same cluster

0 otherwise
EndFor
Averaged co cluster indicator matrices :
1 y
A5, A
A 1 (Z;, Z;) always in the same cluster "Beha;/ior index” :
" 71 0(Z, Z) never in the same cluster = ZJ- Lieca <(1—e)}

e=0.10
(1 — A) is an affinity matrix.
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Applications

Aggregation of clustering instances

Clustering Aggregation (proba0.90) )Kmeans 5 Clustering Aggregation (proba0.90) Kmeans 4

Temp day (dicoPFyear) Wind day (dicoPFyear)

Temperature Wind

using 14 years of daily data
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Applications

Impact of clustering methods on segmentation

What choice between Hierarchical clustering, Kmeans, Spectral Clustering?
Temperature

CCH Temp-day-2014 (dm:364) Kmeans Temp-day-2014 (dim:364) SC Temp-day-2014 (dim:364)
sl 5 clusters dicoTo5 5 clusters dicaT9s.

usters dicoTo5 Cluster

Wind

CCH Wind-day-2014 (dim:16) Kmeans Wind-day-2014 (dim:16) SC Wind-day-2014 (cim:16)
4 clusters peag0 4 clusters peaso clusters peag0

Mathilde Mougeot (Paris Diderot University) @ BA& Env. 2015 §
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Applications

Impact of Feature extraction on Clustering results
Quantification on the impact of Feature extraction using a Cluster Ensemble

approach :

For T € {0.90,...0.99}

1 : Compute Feature Z , with T

2 : Features Clustering using M

3 : Construct a co-cluster indicator matrix A7

At — 1if Z; and Z; are in the same cluster
0 otherwise

EndFor
A+ :%T > et A’ (average indicator matrices)

Ratio = 7(,7(”_11)/2) Zi<j 10<Ai,j<1

M € {HC, Kmeans, SC}

— Hierarchical clustering results are very sensitive
to Feature extraction parameter.

Mathilde Mougeot (Paris Diderot University) BA& Env. 2015
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Conclusion

Conclusion

e Clustering is, at the same time,

e an easy task (just apply a clustering method and see what happen!),
e a very hard one (no objective functions as MSE)
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Conclusion

Conclusion

e Clustering is, at the same time,

e an easy task (just apply a clustering method and see what happen!),
e a very hard one (no objective functions as MSE)

e To be very careful with

o potential high dimensional data as the ¢, norm may not be meaningfull
o the robustness on the results provided by the pre treatments (smoothing)

e We propose a methodology based on :

e Feature extraction (PCA, Non Parametric Regression)
o Clustering a set of data (split the initial time series into 14 one year intervals)
o Aggregate the clustering with alike "Ensemble method” and Spectral clustering

e Work still in progress

e to quantify the benefits of NP regression modeling compared to PCA
o To cluster at the same time Temperature and Wind data
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Conclusion

Thank you for your attention
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