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Design, evolution and optimization of monitoring networks using information concepts

I.- Intro

Air-quality monitoring network analysis

• Monitoring network: multi-objective (quality standards, control,
curbing measures, impacts on health, ecosystems, climate, etc.).

Monitoring network design/analysis

• where to place new stations of the network?
• which stations could be removed?
• optimal geographical distribution? which criteria?

• An increasing research oriented towards network design1.

• We introduced some statistical and variational indicators for
network design derived from information theory2.

1Perez-Abreu 1996, Saunier 2009, Ruiz 2010, Bocquet 2011, Ruiz 2012,
Zidek 2010

2Boltzmann/Gibbs 1870s, Shannon 1948, Kullback 1959
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I.- Intro

Air-quality network

Santiago’s air quality network
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Figure: Stations A: Gotuzzo, B: Providencia (not used, in white); F: Independencia,
L: La Florida, M: Las Condes, N: Parque O’Higgins, O: Pudahuel, P: Cerrillos, Q: El
Bosque (1997-2008, in gray), R: Cerro Navia, S: Puente Alto, T: Talagante, V:
Quilicura (2009-2010, in black) 3 / 34
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I.- Intro

Air-quality network

Santiago’s air quality network

Figure: PM10 and O3 measurements
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I.- Intro

Air-quality network

Santiago’s air quality network

Figure: PM10 “dosis”
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I.- Intro

Air-quality network

Santiago’s air quality network

Figure: O3 “dosis”
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I.- Intro

Data

Data base

1997-2008, 7 stations
normal log-normal gamma

All S W All S W All S W

CO 26.9 24.1 18.1 14.9 23.9 10.9 5.17 8.07 4.66
O3 9.76 10.5 8.99 11.1 19.7 8.87 3.93 10.5 2.06
PM10 10.5 6.46 8.96 1.87 1.50 3.94 0.63 0.41 1.17
SO2 37.1 42.7 26.0 41.1 40.2 30.5 21.0 24.2 12.7

2009-2010, 11 stations
normal log-normal gamma

All S W All S W All S W

PM10 16.3 7.63 8.55 1.78 1.08 3.38 2.25 0.70 1.06
PM2.5 9.84 4.69 9.59 1.36 1.49 2.29 0.71 0.48 0.95
O3 10.9 12.6 6.79 9.81 16.9 6.89 3.85 9.78 3.30

Table: Relative quadratic error (%)
for di↵erent data fitting.
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Figure: Example of some
statistical fitting at 2
stations.
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I.- Intro

Evolution

Evolution of the network

Figure: Evolution of Santiago’s air monitoring sites and urban-rural limit. 8 / 34
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II.- Statistical Analysis

Concepts

II.- Statistical indicators linked to “information”3

Quality indicators:

mutual information or “specificity index”:
how di�cult is to reproduce measurements of i-th station
from the complementary measurements on the network?

information gain or “representativity index”:
total information gain.

information gaps associated to the evolution of a network;

They are introduced based on the concept of relative information
or “divergence” by Kullback and Liebler.

We use them to analyze 14 years of Santiago’s network public data
(1997-2010).

3A. Osses, L. Gallardo, T. Faúndez, Tellus B, 65, 2013
9 / 34



10/34

Design, evolution and optimization of monitoring networks using information concepts

II.- Statistical Analysis

Concepts

Basis: Kullback-Liebler divergence between distributions

Kullback-Liebler divergence of qX w.r.t. pX

KL(pXkqX ) =
Z

pX (x) ln
pX (x)

qX (x)
dx ,

X : multivariate vector of measurements. n : stations, m : species.
pX : reference distribution qX : perturbed distribution.

Normal case: pX ⇠ N (µ0,⌃0), qX ⇠ N (µ1,⌃1)

KL =
1

2

0

BB@tr(⌃�1
1 ⌃0)� nm � ln

|⌃0|
|⌃1|| {z }

variance contrast

+⌃�1
1 (µ0 � µ1)

2

| {z }
mean contrast

1

CCA .

⌃ : covariance matrix, tr : trace, | · | : determinant.
KL � 0 vanishes only if pX = qX but is non symmetric. 10 / 34
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II.- Statistical Analysis

Concepts

Mutual Information and Specificity index

Mutual info between ith-station and other stations (complement)

I iM = KL(pXkpXi
pXc

i
) = �1

2
ln

|⌃X |
|⌃Xc

i
| |⌃Xi

| .

• pXi
, pXc

i
: marginal densities, pX : joint density.

• pXi
= N (µXi

,⌃Xi
), pXc

i
= N (µXc

i
,⌃Xc

i
), pX = N (µ,⌃X )

⇤ specificity index

si = 1�
I iM

maxj I
j
M

i = 1, . . . , n.

! how di�cult is to reproduce measurements of i-th station from
the complementary measurements on the network?
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II.- Statistical Analysis

Concepts

Information Gain and Representativity index

Information gain by measurements of i-th station

I iG = KL(pXkqXc
i
) =

1

2

⇣
tr(B�1

i ⌃Xi
)�m�ln

|⌃X |
|⌃Xc

i
| |Bi |

+B�1
i (µXi

�µbi )
2
⌘

• qXc
i
, pX : situations before and after i-th measurements.

• qXc
i
⇠ N (µ0

i ,⌃
0
i ), µ

0
i = (µbi , µXc

i
), ⌃0

i = diag(Bi ;⌃Xc
i
)

• µbi , Bi : a priori background mean and covariance of ith-station.

⇤ representativity index of the i-th station

ri =
I iG

maxj I
j
G

i = 1, . . . , n.

! relative information gain. We can also compute the information gain
IKG associated to a subset of stations K ⇢ {1, . . . , n}.
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II.- Statistical Analysis

Concepts

Information gaps and evolution of total information

⇤ information gap from K1 to K2

�IK1,K2 = KL(pXkqK1)�KL(pXkqK2) = I
Kc
1

G � I
Kc
2

G .

can be positive or negative and �IK1,K2 +�IK2,K3 = �IK1,K3 .
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Figure: Evolution of total information
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II.- Statistical Analysis

Concepts

Normalized information distance and clustering

Mutual information between stations i and j

I ijM = KL(pXi ,Xj
kpXi

pXj
).

• pXi ,Xj
: joint, pXi

, pXj
: marginals.

⇤ normalized information distance between stations i and j

dij = 1�
I ijM

max(Hi ,Hj)
,

• Hi =�
P

x pXi
(x) ln pXi

(x): Shannon entropy of measurements Xi .

This distance is zero if and only if pXi
and pXj

are independent
(this is not the case for the Pearson’s correlation coe�cient).
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II.- Statistical Analysis

Remove

Removing stations
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Figure: Specificity (top) and representativity (bottom) indexes (simultaneously) for
CO, O3, PM10 and SO2 for hourly data for the period 1997–2008 in summer, winter
and all seasons. Larger circle ! larger index.
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II.- Statistical Analysis

Evolution

Where to add a new station?
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Figure: Left: simulated Barnes interpolation (log [PM10], lighter=higher). Right: at
each point, information gain obtained if we add a new station with interpolated values.
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II.- Statistical Analysis

Evolution

Evolution analysis

●

●

●

●

Years

R
el

at
ive

 to
ta

l i
nf

or
m

at
io

n

1988 1997 2008 2011

0
10

20
30

40
50

60
70

80
90

10
0

F M N

F L M N O P Q

F L M N O P Q R

F L M N O P Q R S T V

Figure: Simulated evolution of total
information content, considering PM2.5

measurements 2009-2010.
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Figure: The same as before using a
interpolated priori information (Barnes
interpolation).
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II.- Statistical Analysis

Clustering

Clustering analysis
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Figure: Hierarchical clustering using the normalized information distance (left
column) compared with the Pearson correlation function (right column) (2009-2010).
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II.- Variational analysis

II.- Variational indicators linked to “information”4

Quality indicators:

Precision gain

Total information gain

Degrees of freedom

They are introduced in the data assimilation framework.

We use them, weighted by some design criteria, to reduce, extend
and optimize the air-quality monitoring network of Santiago.

4A. Henŕıquez, A. Osses, L. Gallardo, M. D́ıaz, to appear in Tellus B 2015
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II.- Variational analysis

DA framework

Data assimiliation framework

Given a linear tracer, meteorology, the sensitivity matrix H store
the impact of unit emmisions at sites X in measurements sites Y :

Y = H X

The best estimator of true emmisions, is the unique solution of:

min
X

1

2
kHX � Yok2R�1 +

1

2
kX � XbkB�1

Yo : m-dimensional measurement vector with covariance R .
Xb: background estimation (best guest) with covariance B .

Analysis: best estimator of emmissions and its covariance

Xa = Xb + ⌃�1
a (HXb � Y0)

⌃a = (B�1 + HtR�1H)�1

20 / 34
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II.- Variational analysis

DA framework

One network = one subsensitivity

Each monitoring network can be characterized by a submatrix H 0

of the total sensitivity H with associated analysis X 0
a, ⌃

0
a:

grid sensitivity H subsensitivity H 0

Figure: Left: network sites in emmission grid. Center: selected sites as rows of the
total sensitivity. Right: reduced sensitivity matrix. 21 / 34
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II.- Variational analysis

Precision gain

Precision gain of a network

The precision gain is obtained by substracting the total precision
after and before the observations of the network are assimilated:

⇤ precision gain

�pr(H 0) = Tr (⌃0�1
a )� Tr (B�1), H 0 $ network
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II.- Variational analysis

Total information gain

Total information gain of a network

The information gain of the network is obtained by substracting
the total information after and before the observations of the
network are assimilated:

⇤ total information gain

�I (H 0) =
1

2
ln|B |� 1

2
ln|⌃0

a|, H 0 $ network
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II.- Variational analysis

Degrees of freedom

Degrees of freedom of a network

The degrees of freedom represents the number of states (in the
n-dimensional emmission space) that can be e↵ectively retrieved
from the observations of the given network:

⇤ degrees of freedom

d .f .(H 0) = n � Tr(B�1⌃0
a), H 0 $ network

• limit cases: no knowledge g .l . = 0, perfect knowledge g .l . = n.

• The degrees of freedom corresponds to the trace of the so called
influence matrix A:

A = R� 1
2H 0⌃a H

0tR� 1
2 .
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II.- Variational analysis

Degrees of freedom
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II.- Variational analysis

Weighted sensitivity

Weights

We apply a weight
q
⇡�
j to each emission grid point j

(�: modulation parameter), for example:

⇤ weights

• population density
• health risk
• feasibility costs

So we replace H by

Weighted sensitivity

H 0
� = H 0⇧�

before computing the quality indicators, where:

⇧� = diag (

q
⇡�
1 , . . . ,

q
⇡�
n ).
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II.- Variational analysis

Weighted sensitivity

Population density weights
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Figure: Weighting functions applied. Upper panel: log of population
density (hab/km2). Lower panel: log of normalized CO summer emission
fluxes (molkm�2hr�1). White contour: urban-rural limit in 2010. White
circles: location of monitoring stations in 2009.
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Results

Removing

Removing stations
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Figure: Total information gain without (left) or with (right) population density
weight. Remove stations with smallest circles.
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Results

Adding

Adding stations
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Figure: White squares: potential location of new stations coinciding with
local maxima of information gain (in percentage w.r.t. basal network).
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Results

Optimal placement

Optimal network design
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Figure: Optimal networks and wind patterns.
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Results

Optimal placement & evolution

Optimal placement and evolution
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Figure: Real v/s Optimal evolution: 4, 8, 11, 14 stations. Squares: new
stations.

31 / 34



32/34

Design, evolution and optimization of monitoring networks using information concepts

Results

Optimal placement & evolution

Optimal placement: 4 stations

Figure: Network search: maximizing total information (�minH(��I )) with weights.
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Summary

Summary

Indicators (both statistical/variational) can be used
concurrently to analyse/design an observational network.

Statistical indicators. Pros: simple for remove/analyze, use
real measurements. Cons: do not include dispersion models,
adding stations involves hard interpolation (kriging,
variograms) not physically consistent.

Variational indicators. Pros: include dispersion models so
analysis (add/remove/optimize) is consistent with known
emission and circulation patterns, weigth criteria allowed.
Cons: measurements are not directly used (but could be
indirectly used via weights and/or data assimilation). Time
consuming modeling.
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Summary

Many thanks!
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