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Design, evolution and optimization of monitoring networks using information concepts
L1 Intro

Air-quality monitoring network analysis

e Monitoring network: multi-objective (quality standards, control,
curbing measures, impacts on health, ecosystems, climate, etc.).

Monitoring network design/analysis

e where to place new stations of the network?
e which stations could be removed?
e optimal geographical distribution? which criteria?

e An increasing research oriented towards network design?.

e We introduced some statistical and variational indicators for
network design derived from information theory?.

!Perez-Abreu 1996, Saunier 2009, Ruiz 2010, Bocquet 2011, Ruiz 2012,
Zidek 2010
2Boltzmann/Gibbs 1870s, Shannon 1948, Kullback 1959

)
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L1 Intro

LAir—quality network

Santiago’s air quality network
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Figure: Stations A: Gotuzzo, B: Providencia (not used, in white); F: Independencia,
L: La Florida, M: Las Condes, N: Parque O'Higgins, O: Pudahuel, P: Cerrillos, Q: El
Bosque (1997-2008, in gray), R: Cerro Navia, S: Puente Alto, T: Talagante, V:

Quilicura (2009-2010, in black) 3/34



Design, evolution and optimization of monitoring networks using information concepts

L1 Intro
LAir—quality network

Santiago’s air quality network
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Figure: PM10 and O3 measurements
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Intro

LAir—quality network

Santiago’s air quality network
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Figure: PM10 “dosis”

PM10 (dumal)

P10 (noctuma

34



Design, evolution and optimization of monitoring networks using information concepts

—1.- Intro

LAir—quality network

Santiago’s air quality network

Figure: 03 “dosis”
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L1 Intro

L Data

Data base

1997-2008, 7 stations
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2009-2010, 11 stations
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Table: Relative quadratic error (%)

for different data fitting.
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Figure: Example of some

statistical fitting at 2

stations.
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—1.- Intro

L Evolution

Evolution of the network
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Figure: Evolution of Santiago's air monitoring sites and urban-rural limit. -,
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L1~ Statistical Analysis

L Concepts

Il.- Statistical indicators linked to “information”3

Quiality indicators:

m mutual information or “specificity index":
how difficult is to reproduce measurements of i-th station
from the complementary measurements on the network?

m information gain or “representativity index":
total information gain.

m information gaps associated to the evolution of a network;

They are introduced based on the concept of relative information
or “divergence” by Kullback and Liebler.

We use them to analyze 14 years of Santiago's network public data
(1997-2010).

3A. Osses, L. Gallardo, T. Fatndez, Tellus B, 65, 2013
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L1~ Statistical Analysis

L Concepts

Basis: Kullback-Liebler divergence between distributions

Kullback-Liebler divergence of gx w.r.t. px

KL(pxllax) = [ ) n 20 ax,

X : multivariate vector of measurements. n : stations, m : species.
px : reference distribution gx : perturbed distribution.

Normal case: px ~ N (w0, Xo), gx ~ N (p1,21)

KL = > tr(X7 %) — nm — In :Z } + X7 (o — p1)?
%,_/
S ~~ mean contrast
variance contrast
Y : covariance matrix, tr : trace, | - | : determinant.

KL > 0 vanishes only if px = gx but is non symmetric. 10/34
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L1~ Statistical Analysis

L Concepts

Mutual Information and Specificity index

Mutual info between ith-station and other stations (complement)

| x|

iy = KL(pxllpxipxs) = =3 In 1= St

® Px;. PX¢: marginal densities, px: joint density.
o px; = N(uxi» Tx;), pxe = N(pxe, Xxe), px = N(p, Zx)

[ specificity index

e oy

S = 1-— ;
max; ly,

— how difficult is to reproduce measurements of j-th station from
the complementary measurements on the network?

11 /34
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L1~ Statistical Analysis

L Concepts

Information Gain and Representativity index

Information gain by measurements of j-th station

| x|
| Zxe| |Bil

. 1 3 3
I = KL(pxllaxe) = 5 (tr(B" Zx;)—m—In +B; g~
® gxc, px: situations before and after i-th measurements.

o qxe ~ N(ui, X7), wi = (b pixe ), T = diag(Bj; Txe)
® i, Bj: a priori background mean and covariance of ith-station.

[J representativity index of the i-th station

Ii .
& ¥ i=1,.
max; I

ri = R 1 B

— relative information gain. We can also compute the information gain
1X associated to a subset of stations K C {1,...,n}.

12 /34
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L_11.- Statistical Analysis

L Concepts

Information gaps and evolution of total information

[1 information gap from Kj to K3
K¢ Ks
A" = KL(px|lak,) — KL(pxllak,) = Ig* — Ig* .

can be positive or negative and A/K1:K2 1 AJK2Ks — A KLKs,

Total information

AI“JM :
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e
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Figure: Evolution of total information
13 /34
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L_11.- Statistical Analysis

L Concepts

Normalized information distance and clustering

Mutual information between stations / and j
Ity = KL(px; x|l px; px;)-

® px x;: Joint, px;, px;: marginals.

[ normalized information distance between stations / and j

i
dj=1- max(H;, H;)’
o Hi=—)_, px;(x)Inpx;(x): Shannon entropy of measurements X;.
This distance is zero if and only if px, and px; are independent
(this is not the case for the Pearson's correlation coefficient).

14 /34
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L1~ Statistical Analysis

LRemove

Removing stations

specificity

summer winter

representativity

summer winter

Figure: Specificity (top) and representativity (bottom) indexes (simultaneously) for
CO, O3, PMjp and SO; for hourly data for the period 1997-2008 in summer, winter
and all seasons. Larger circle — larger index.
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‘—11.- Statistical Analysis

LEvolution

Where to add a new station?
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-200
706 705 704 703

Figure: Left: simulated Barnes interpolation (log [PM1g], lighter=higher). Right: at
each point, information gain obtained if we add a new station with interpolated values.
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L1~ Statistical Analysis
LEvolution

Evolution analysis
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Figure: Simulated evolution of total Figure: The same as before using a
information content, considering PM3 5 interpolated priori information (Barnes
measurements 2009-2010. interpolation).
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L1~ Statistical Analysis

LClustering

Clustering analysis
PMy.s

normalized info distance Pearson distance

Higt
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Figure: Hierarchical clustering using the normalized information distance (left

column) compared with the Pearson correlation function (right column) (2009-2010). .
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L_11.- Variational analysis

Il.- Variational indicators linked to “information”*

Quality indicators:

m Precision gain
m Total information gain

m Degrees of freedom

They are introduced in the data assimilation framework.

We use them, weighted by some design criteria, to reduce, extend
and optimize the air-quality monitoring network of Santiago.

A, Henriquez, A. Osses, L. Gallardo, M. Diaz, to appear in Tellus B 2015

19/34
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L_11.- Variational analysis
L DA framework

Data assimiliation framework

Given a linear tracer, meteorology, the sensitivity matrix H store
the impact of unit emmisions at sites X in measurements sites Y:

Y=HX

The best estimator of true emmisions, is the unique solution of:
.1 5 1
min S |HX = Yo[[g-1 + S[1X = Xbll g

Y,: m-dimensional measurement vector with covariance R.
Xp: background estimation (best guest) with covariance B.

Analysis: best estimator of emmissions and its covariance
Xa = Xp + X1 (HX, — Yo)
Y,= (B! +HRIH)™?

20 /34
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L_11.- Variational analysis
L DA framework

One network = one subsensitivity

Each monitoring network can be characterized by a submatrix H’
of the total sensitivity H with associated analysis X2, ¥/:

(YY"

grid sensitivity H subsensitivity H’

Figure: Left: network sites in emmission grid. Center: selected sites as rows of the
total sensitivity. Right: reduced sensitivity matrix. 21/34
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L Il.- Variational analysis

L Precision gain

Precision gain of a network

The precision gain is obtained by substracting the total precision
after and before the observations of the network are assimilated:

Apr(H) =Tr (X571 = Tr (B7Y), H' «++ network
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L Il.- Variational analysis

L Total information gain

Total information gain of a network

The information gain of the network is obtained by substracting
the total information after and before the observations of the
network are assimilated:

[ total information gain

1 1
Al(H") = 5 InlBl = 2 In|XL|,  H' ¢ network

23 /34
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L_11.- Variational analysis

LDegrees of freedom

Degrees of freedom of a network

The degrees of freedom represents the number of states (in the
n-dimensional emmission space) that can be effectively retrieved
from the observations of the given network:

[1 degrees of freedom

d.f.(H)=n-Tr(B71Y), H' <+ network
e |limit cases: no knowledge g./. = 0, perfect knowledge g./. = n.

e The degrees of freedom corresponds to the trace of the so called
influence matrix A:

A=RIH'Y,HtR ?

24 /34
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‘—Il.- Variational analysis

LDegrees of freedom

Definition

Quality Q
indicator
Precision

. Apr
%arm P
nformation

R AT
gain
Degrees of ;-
freedom

Tr(S71) — Tr (B~Y)
L - 1 m|BY

n—Tr(B~1%,)

Table 1. Summary of the main quality indicators or metrics for
an air quality network. See text for details, and Figure 2 for il-

lustration.

- - = precision gain
—— information gain
4f- ===~ degrees of freedom

107 107 ° !
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LII.— Variational analysis
L Weighted sensitivit
g Y

Weights

We apply a weight ,/771”.6 to each emission grid point j

(8: modulation parameter), for example:

e population density
e health risk
e feasibility costs

So we replace H by

Weighted sensitivity

Hy = H'Tg

before computing the quality indicators, where:

= diag ( \/;,.. \/7?,,

26 /34
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LII.— Variational analysis
LWeighted sensitivity

Population density weights
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Figure: Weighting functions applied. Upper panel: log of population
density (hab/km?). Lower panel: log of normalized CO summer emission
fluxes (molkm=2hr~1). White contour: urban-rural limit in 2010. White
circles: location of monitoring stations in 2009.
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L Results

L Removing

Removing stations

p=0 B =07

Figure: Total information gain without (left) or with (right) population density
weight. Remove stations with smallest circles.
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L Results
L Adding

Adding stations

SANTIAGO 2009 rSANTIAGO 2009
POPULATIO - q CO EMISSION
DENSITY FLUXES

Figure: White squares: potential location of new stations coinciding with
local maxima of information gain (in percentage w.r.t. basal network).
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L Results

LOptimal placement

Optimal network design
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Figure: Optimal networks and wind patterns.
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L Results

LOptimal placement & evolution

Optimal placement and evolution

SANTIAGO 1997
N=8

SANTIAGO 2009

FUTURE
N=ld

Figure: Real v/s Optimal evolution: 4, 8, 11, 14 stations. Squares: new

stations.
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L Results

LOptimal placement & evolution

Optimal placement: 4 stations

Figure: Network search: maximizing total information (—miny(—Al)) with weights. _, .,
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LSummary

Summary

m Indicators (both statistical /variational) can be used

concurrently to analyse/design an observational network.

Statistical indicators. Pros: simple for remove/analyze, use
real measurements. Cons: do not include dispersion models,
adding stations involves hard interpolation (kriging,
variograms) not physically consistent.

Variational indicators. Pros: include dispersion models so
analysis (add/remove/optimize) is consistent with known
emission and circulation patterns, weigth criteria allowed.
Cons: measurements are not directly used (but could be
indirectly used via weights and/or data assimilation). Time
consuming modeling.

33 /34
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LSummary

Many thanks!
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