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Introduction

In Meteorology, we are used to apply a technique known as En-
semble weather forecast which consists of a combination of
several numerical weather predictions derived from different me-
teorological models, and initial and boundary conditions.

This technique has been proving to be a viable approach to reduce
the uncertainties in numerical weather predictions.

There are some statistical methods for postprocessing ensem-
bles. It means combining several forecasts to produce a single
ensemble forecast. These methods have worked well for vari-
ables such as temperature. However, these approaches have not
worked well for quantitative precipitation prediction.
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Motivation

The motivation is threefold:

The limitations of the current methods for postprocessing en-
sembles, particularly for quantitative precipitation prediction.

The difficulty in forecasting rainfall amount.

The importance of an accurate and reliable quantitative pre-
cipitation forecast for the strategic planning of several socio-
economic sectors (such as agricultural production, hydropower
generation, water availability for public consumption, flood and
landslides controlling, and others).
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Context
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In this context, we explored an evolution-
ary computation algorithm known as ge-
netic programming (GP) in order to pro-
vide a more accurate and reliable short-
range ensemble forecasts of 24-hour ac-
cumulated precipitation for many real-
world data sets over south, southeast and
central parts of Brazil during the rainy pe-
riod from October to February of 2008 to
2013.
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Genetic Programming

Before showing the results, I will talk a little about Genetic Programming.
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Genetic Programming

It is a stochastic optimization metaheuristic based on Darwin’s
theory of evolution by natural selection, commonly referred to
as the “survival of the fittest”: given a population of individuals,
the environmental pressure causes natural selection, and so the
individuals’ fitness tends to rise.

It evolves a population of computer programs, usually expressed
as syntax trees.

A quite robust and simple technique in terms of concept and
implementation.

Potentially non-linear technique.

It evolves human-interpretable solutions.

It exhibits inherent parallelism.

There is the possibility of introducing specialist knowledge into
the grammar.
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Genetic Programming

It starts with the generation of an
initial population of candidate solu-
tions. Each solution is evaluated ac-
cording to a fitness function. Based
on this fitness, some solutions are
stochastically selected from the pop-
ulation. The algorithm follows with
the application of the genetic opera-
tors over the selected solutions. Two
of the most important genetic opera-
tors are crossover and mutation. The
new solutions are introduced into the
population. The evolutionary pro-
cess of evaluation, selection, genetic
operators, and replacement is iter-
ated until a stopping criterion is sat-
isfied. The final solution is the best
solution of the last iteration.

7



Grammar

There are different variants of GP. Two of them are: grammar-based
GP and grammatical evolution. Both have the advantage of evolving
syntactically correct solutions in an arbitrary language described by a
grammar.

Six different grammars were designed to tackle the ensemble forecast
problem. Now, I will show one of them: the NLA grammar.
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NLA Grammar
A grammar comprises four entities: a start symbol, the production
rules, the terminal symbols, in italic, and the non-terminal symbols,
enclosed by brackets. The non-terminal symbols can be replaced by non-
terminal or terminal symbols. The terminal symbols represent the oper-
ators and operands of the language, and cannot be replaced anymore.

S = if-then-else <logical> <ensemble> <ensemble>
P = <ensemble> ::=<model> | <const> | <attribute> |

<binary> <ensemble> <ensemble> |
<unary> <ensemble> |
if-then-else <logical> <ensemble> <ensemble>

<binary> ::=+ | − | × | ÷ | mean | max | min
<unary> ::=− | abs | √ | (·)2 | (·)3
<logical> ::=∨ <logical> <logical> |

∧ <logical> <logical> |
¬ <logical> |
<relational> pattern <pattern> |
<relational> <index> <const> |
<relational> <attribute> <const> |
rain | pattern change

<relational>::=> | < | =
<pattern> ::=P1 | P2 | P3 | P4

<model> ::=M1 | . . . | Mm

<index> ::=K | TT | SWEAT
<attribute> ::=O(1day) | O(2days) | O(mean) | O(P) |

M(mean) | M(std) | M(max) | M(min) |
O(lag1+) | O(lag2+) | O(lag3+) | BMA |
O(lag1−) | O(lag2−) | O(lag3−) 9



NLA Grammar
A grammar is a device for generating sentences — a finite sequence of
terminal symbols satisfying certain grammatical rules.
The NLA grammar enables linear and non-linear combination of mod-
els, allows the use of some attributes, and includes conditional, logical
and relational operators.

S = if-then-else <logical> <ensemble> <ensemble>
P = <ensemble> ::=<model> | <const> | <attribute> |

<binary> <ensemble> <ensemble> |
<unary> <ensemble> |
if-then-else <logical> <ensemble> <ensemble>

<binary> ::=+ | − | × | ÷ | mean | max | min
<unary> ::=− | abs | √ | (·)2 | (·)3
<logical> ::=∨ <logical> <logical> |

∧ <logical> <logical> |
¬ <logical> |
<relational> pattern <pattern> |
<relational> <index> <const> |
<relational> <attribute> <const> |
rain | pattern change

<relational>::=> | < | =
<pattern> ::=P1 | P2 | P3 | P4

<model> ::=M1 | . . . | Mm

<index> ::=K | TT | SWEAT
<attribute> ::=O(1day) | O(2days) | O(mean) | O(P) |

M(mean) | M(std) | M(max) | M(min) |
O(lag1+) | O(lag2+) | O(lag3+) | BMA |
O(lag1−) | O(lag2−) | O(lag3−) 10



Results

A comparison between some traditional statistical techniques and a
set of GP experiments was performed. And now I will show the results.
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Results

Box plots of the Mean Absolute Error (MAE) of the three-day ensem-
ble forecast for many locations over Brazil. The first fourteen boxes are
GP experiments with different grammars and different GP versions. The
last box is the best ensemble member.
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Results

GP obtained a higher performance relative to three traditional statistical
techniques, with errors 27–57% lower than simple ensemble mean’s
and the MASTER super model ensemble system’s, and is also superior
to the best individual forecasts in 34–42%. On the other hand, GP
had a similar performance to each other and to the Bayesian model
averaging, but GP is a technique far more versatile.
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Results

if-then-else

M3 ×M(max)3

absBMA¬ rain

min

1.27×M2

−

M2 ×M2
1

pattern = P1

if-then-else

−

O(lag1−)

(·)3 O(P )×O(lag2+)

Example of the program cor-
responding to 1-day ensemble
quantitative precipitation fore-
cast for Franca-SP, with MAE of
6.98mm on the training set and
5.73mm on the test set. The filled-
in gray ellipses are leaf nodes. The
expression tree is read from left to
right, starting at the top and work-
ing down.

In addition to improving the quan-
titative precipitation forecasts, we
can also extract knowledge from
the best solutions.
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Conclusions

The experiments showed the potential of the GP approach, with
a clear advantage over the traditional statistical techniques.

GP achieved more accurate ensemble forecasts.

GP offers human-interpretable solutions.

Allows the incorporation of specialist knowledge through a formal
grammar.

Grammar-based GP can evolve expressions of arbitrary complex-
ity.

Further investigation on the improvement of the technique is
a promising line of research.
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Underway Work

The main drawback of the GP approach is the high computa-
tional cost of its fitness function. It would preclude its oper-
ational implementation, particularly with regard to the practice
of weather forecasting.

The applicability of GP to deal with the ensemble forecast problem
can be seriously compromised with the increase of the volume
of the input data.

For instance, consider a scenario of providing operational long-
range ensemble forecasts of quantitative precipitation on the
global scale using TIGGE data; it would probably take days run-
ning.

On the other hand, one of the major advantages of GP is its high
degree of parallelism.

In this context, we are currently working on a parallel version
of GP in order to reduce computational time and improve the
solution quality.
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Parallel Models of Genetic Programming

I will talk about our parallel decomposition of GP.
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Parallel Models of Genetic Programming

GP can be decomposed into three complementary parallel
models: algorithmic-level, iteration-level and solution-level.
The three parallel models were designed in a hierarchical mul-
tiplicative way.

Regular and massive workloads should be processed on acceler-
ators whereas irregular and mostly sequential workloads should
be processed on CPU. Basically, this means that CPU manages
the evolutionary process and performs in a serial way the selec-
tion, reproduction and replacement steps, while an accelerator
is responsible for evaluating the solutions and finding the best
solution at each generation.
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Iteration- and Solution-Level Parallel Model

The solutions are distributed among the compute units (CU), and
the processing elements (PE ) within each compute unit take care, in
parallel, of the whole training dataset.

Conceptual compute device architecture.
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Algorithmic-Level Parallel Model

Different settings of the algorithm are launched in a parallel
cooperative way.

Each independent run of the algorithm is assigned to a different
local or remote processor.

To fully exploit the available computational resources, the num-
ber of running algorithms should be roughly equivalent to the
number of CPUs cores.

The communication among the algorithms follows the client-
server model based on sockets.

Each algorithm has its own socket, and the lightweight processes
of message passing are assigned to multi-threads running in par-
allel.

The communication topology can be modified on-the-fly.

The message passing is carried on via local network or Internet.

A failure on a processor or on the communication channel cannot
bring down the whole system.

The flow of message is moderate and the data transfer speed is
flexible. 20



Algorithmic-Level Parallel Model

An illustrative example of a com-
munication topology between three
processes or algorithms: P1, P2 and
P3. Each process P is represented by
a server S and by sending Snd and
receiving Rcv message operations.
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Parallel Models of Genetic Programming

Whenever a client is connected to a server, a thread automatically
starts in background and receives the message.

Sequence of execution of communication and evolutionary tasks by P1.
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Parallel Models of Genetic Programming
During the execution of the tasks on accelerators, some communica-
tion operations, such as sending emigrants to servers and transferring
immigrants to current population, are done by CPUs cores in back-
ground. That is, the strategy overlaps computation and communica-
tion, which in practice fully hides the communication effort. Both the
communication and evolutionary tasks are concurrent, i.e., the com-
munication operations are done asynchronously in background and do
not interrupt the execution of the algorithm.

Sequence of execution of communication and evolutionary tasks by P1.
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Parallel Models of Genetic Programming

The CPU and GPU idle time and the impact of the communication op-
erations on the execution time of the whole system should be minimal.

Sequence of execution of communication and evolutionary tasks by P1.
24



Final Remarks

Right now we are finishing some implementation details, and we will soon
begin the tests of time and solution quality.
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End...

!Muchas Gracias!
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