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Explanation of Variability: Empirical Orthogonal Functions

1. Data: variables of interest (temperature, pressure, etc.) on a
regular grid, at regular time intervals, with mean
(climatology) substracted.

2. Data arrangement: re-arrange the spatial grid into a column

vector x , form matrix X =
{
X j
i

}
with one column x j per

time.

3. Singular Value Decomposition:

X = UΣV ′ =
∑
k

σkukv
′
k ,

σk ≥ 0, (uk , ul) = (vk , vl) = δlk .

The uk are the EOFs (principal components of X , modes of

variability of the system), each “explaining” a fraction σk
2∑

l σl
2

of the total variability.



Issues

1. Interpretability: Are we talking about internal modes of
variability or responses to external factors?

2. Why should the modes of variability be orthogonal, why
linear, why time independent.

3. Data: Data is typically not gathered on regular grids at
regular intervals, hence the need to interpolate or re-analyze.

4. In order not to mix pears and apples, one restricts data to
averages over a day-month-season-year: data waste, poorly
resolved dynamics.

Proposal: an alternative, natural methodology for the explanation
of variability, with interpretable factors and none of the issues
above.



A starting point: consolidation of databases
(addressing explanation through filtering)

Distinct collections of observations of a single variable or sets of
variables: different groups and protocols, different apparatuses,
alternative methodologies, improved technology.

Problem: how to put these datasets together.

If the various sets are just amalgamated without further ado, a
large fraction of the variability can be attributed to the different
data sources.

One would like to clean the data (x) from any indication of its
source (z), removing the source-idiosyncratic component of each
measurement.



Anti-supervised learning



Relation to optimal transport

Filtering all information relating to a factor z (source) from a set
of samples xi is transforming the data

x → y , y = y(x ; z)

so that one cannot infer from yi the the corresponding label zi : the
distribution µ(y) underlying the yi must be independent of the
label.
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Formulation

x → y , y = yk(x)

∀A
∫
y−1
k (A)

ρk(x) dx =

∫
A
µ(y) dy

min
µ,yk

D =
K∑

k=1

Pk

∫
c (x , yk(x)) ρk(x) dx .

Canonical cost:
c(x , y) = ‖y − x‖2.



Formulation in terms of samples

1) Original formulation (alla Monge): maps y = yk(x),

yk : ρk(x)→ µ(y),

min
µ,yk

DM =
K∑

k=1

Pk

∫
c (x , yk(x)) ρk(x) dx .

2) Relaxation (alla Kantorovich): couplings πk(x , y),∫
πk(x , y) dy = ρk(x),

∫
πk(x , y) dx = µ(y),

min
µ,πk

DK =
K∑

k=1

Pk

∫
c (x , y))πk(x , y) dxdy .



Formulation in terms of samples (continuation)
3) Dual problem: Lagrange multipliers:

∫
πk(x , y) dy = ρk(x) → φk(x)∫
πk(x , y) dx = µ(y) → ψk(y).

max
φk ,ψk

K∑
k=1

∫
φk(x)ρk(x) dx ,

φk(x) + ψk(y) ≤ Pkc(x , y),
K∑

k=1

ψk(y) ≥ 0.

4) In terms of the data xi , ki ,

max
φk ,ψk

K∑
k=1

1

mk

∑
ki=k

φk(xi ), φk ∈ F .



Two considerations

I Effect of the selection of a space F for φk on the restrictions
of the primal problem:∫

πk(x , y) dy = ρk(x)→

∀u(x) ∈ F ,

∫
[πk(x , y) dy − ρk(x)] u(x) dx = 0.

Example: if F is the space of quadratic functions,[∫
πk(x , y) dy

]
must agree in expected value and variance

with ρk .

I Connection between Kantorovich’s dual and Monge’s primal
for the canonical cost:

yk(x) = x −∇φk(x).

Consequence: the example above yields linear maps.



A poor man’s solution: linear maps in one dimension

For each component of x , propose yk = αkx + βk .

Procedure:

1. group the {xi} per class k,

2. estimate x̄k , σk (empirical mean and standard deviation),

3. optimal transport + canonical cost →

ȳ =
∑
k

Pk x̄k , σy =
∑
k

Pkσk ,

4. compute

αk =
σy
σk
, βk = ȳ − αk x̄k

5. and filter

yi = αki xi + βki .



Example

We create synthetic data, consisting of a signal xj = F (zj ,wj),
where wj , the “hidden signal”, is white noise with time-dependent
parameters, zj ∈ {0, 1}, the “source”, is chosen randomly for each
j , and F is a linear function of wj , with parameters depending on
zj .



Example (data and results)
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Interpretation and extensions

Filtering data source is not different from explaining away discrete
variability factors: season, day vs. night, etc.

Natural extension: continuous factors z , such as time of the day or
year:

yk(x)→ y(x |z), ρk(x)→ ρ(x |z).

In our poor man’s solution, ρ(x |z)→ x̄(z), σ(z),

ȳ =
1

m

∑
j

x̄(z), σy =
1

m

∑
j

σ(zj),

yi = α (zi ) xi + β (zi ) ,

α(z) =
σy
σ(z)

, β(z) = ȳ − α(z)x̄(z).



Continuous factor (continued)

To avoid granularity, we may propose for instance

x̄(z) = A + Bz , σ(z) = eC+Dz ,

and fit (A,B,C ,D) to the data through maximal likelihood:

(A,B,C ,D) = arg max L =
∑
j

log [N (xj |µ(zj), σ(zj))] .

For multifactors (z vectorial),

x̄(z) = A + B · z , σ(z) = eC+D·z .

Furthermore, z can include any number of nonlinear features.



Time series

Consider for instance a time series generated by a Markov process,

xn+1 = F (xn,wn),

where only the x are observed, and F and wn are unknown. Then
the factor that plays the role of “z” is the prior element xn in the
time series.
In the example below, we generated a time series from the model

xn+1 = 0.1 +
10

11
xn + exn−1wn+1,

where wn is white noise modulated by a sinusoidal amplitude.



Time series (data and results)
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Real data: hourly temperature in Boulder, CO
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Filtering the season

ty =
2πt

365.25

z =



cos (ty )
sin (ty )

cos (2ty )
sin (2ty )
cos (3ty )
sin (3ty )
cos (4ty )
sin (4ty )





Temperature with season filtered
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Filtering time and season

td = 2πt

ty =
2πt

365.25

z =



cos (ty )
sin (ty )
cos (td)
sin (td)

cos (ty ) cos((td)
. . .

sin (4ty ) sin (4td)





Temperature with time and season filtered
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Histograms
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Predicted and realized variability
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Predicted, realized and filtered variability (10 days)
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Realized and filtered variability (3 months)
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Precipitation
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Temperature vs. precipitation, realized and filtered
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Further ado

Bring in more sites!

No current need to sample at regular intervals; with coordinates
added as explanatory factors, no need for a spatial grid either.

Some of many other factors to add:

I Solar radiation

I Level of CO2

I Altitude, distance from sea, nature of soil.

Factor discovery (clustering + explanation), including internal
modes of variability

Dynamics, time series analysis

No need to stick to a poor man’s tools.



Summary

I Generalizations of optimal transport provide a conceptual and
computational framework for “anti-supervised learning”: the
removal from data of information that can be explained by
external factors.

I A plethora of applications to climate, including consolidation
of data sets, explanation of variability by external factors,
discovery of internal modes of variability.

I Flexible and robust computational tools, ranging from
state-of-the-art data-driven optimal transport to poor man
solutions restricted to linear maps.

I Much to do: apply to much more data, theoretic and
algorithmic developments, generalizations.


