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Los ignorantes suponen que infinitos sorteos requieren un tiempo infinito;

en realidad basta que el tiempo sea infinitamente subdivisible.

∗ ∗ ∗

The ignorant assume that infinite drawings require infinite time; actually, all

that is required is that time be infinitely divisible.

JLB, The Lottery in Babylon (1941)

(Kolmogorov’s work laying the foundations of the theory of continuous time

stochastic processes was only published in 1933)
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Introduction

Context: wind energy in France

• As of 2014, the total installed wind power capacity in France was 9,285

MW, 3.1% of total electricity was produced from wind.

• The market is not dominated by a single producer: 1200 MW is installed

by Engie (GDF Suez), 850 MW by EDF Energies Nouvelles, the rest is

split between many independent producers.

• Presently, the production of a wind power plant is bought by EDF at a

fixed price for the first 15 years of the plant’s operation.

• After the “guaranteed purchase” period, the producers must sell the

electricity in the open market
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Introduction

Electricity markets in Europe

Wind power producers have access to four types of markets:

• Forward market – up to 1 day prior to delivery

• Spot market – 1 day prior to delivery

• Intraday market – between 1 day and 45 minutes

• Adjustment (imbalance) market (managed by RTE, power network

operator) – the last 45 minutes

Forward market Spot market Intraday market Adjustment market−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
t−24h t−45min Production date t

Short-term forecasts may be used to determine optimal trading strategies
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Introduction

Goal and contributions of this study

Goals of this study

• Determine the optimal strategy to sell electricity in various markets, which

are adjusted dynamically using the available forecast information.

• Compare the gain of the wind producer with/without forecast, to

determine the economic value of the forecasts.

Main contributions

• We propose a stochastic dynamic model for the realized production and

the forecast errors and calibrate it to data provided by a wind producer.

• We formulate the optimization problem faced by the wind producer and

determine the optimal solution under various assumptions.
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A model for realized production

Production data

• Output power at wind park level for 3 wind parks in France, sampled at

10-minute intervals from Jan 1st, 2011 to Jan 1st, 2015 was provided by

Maı̈a Eolis

• Data contains small negative values due to turbine consumption

• Production caps at the rated power of wind park Pmax
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Realized production for the three wind parks in January 2014
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A model for realized production

A model for realized production

The “normalized production” FT is a function of the “stylized wind speed” XT

FT = fprod (XT ), FT =


PT

Pmax
0 < PT < Pmax

0 PT ≤ 0

1 PT = Pmax

fprod (x) =
(x − xmin)

+ − (x − xmax)
+

xmax − xmin

• PT is the actual production

• Pmax is the total rated power

• XT is a latent variable, “stylized wind

speed”

• fprod is the production function (power

curve)
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A model for realized production

Production: results for BO power plant

We assume that XT follows a 2-parameter log-normal distributon. Then,

FT ∈ [0,1] follows a 3-parameter truncated log-normal distribution.
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A model for forecast dynamics

Forecast data

Forecasts of the output power at wind park level, produced by an independent

forecasting company, were provided by Maı̈a Eolis

• Period: Dec 7th 2011 – March 3rd, 2015

• Frequency of forecast updates: 6 hours

• Forecast time horizon: from 1h15min to 144 hours with 15 minute step

• The forecast values are positive

• In the analysis, we use the normalized forecast value

Ft(T ) = forecast(t ,T )/Pmax
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A model for forecast dynamics

Forecast evolution

Plot of the forecast made at a given date as function of time horizon together

with the realized production for this horizon. Accuracy decreases for longer

horizons.

Zongjun Tan and Peter Tankov Optimal trading for wind energy producer Big Data and Environment 13 / 30



A model for forecast dynamics

Forecast dynamics

Dynamics of the forecast made for a given delivery date. The forecast process

appears continuous. Volatility increases slightly as delivery date approaches.
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A model for forecast dynamics

Forecast Error
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Dynamics of the forecast error Errτ (T ) = FT − FT−τ (T ) made for a given

delivery date, as a function of forecast time-lag τ . Volatility of error decreases

as delivery date approaches.
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A model for forecast dynamics

A dynamic model for forecast evolution

The realized production FT is a function of the latent variable XT :

FT = fprod (XT )

⇒ It is natural to assume that the forecast Ft(T ) will depend on the best

prediction of XT available at time t , denoted by Xt

⇒ To build a model for the forecast, we endow the variable X with a

log-normal martingale stochastic dynamics

dXt = XtσtdWt t ∈ [0,T ), XT = XT−ebZ− b2
2 , Z ∼ N(0,1).

where W is a Brownian motion (continuous time stochastic process with

independent Gaussian increments) and (σt) describes the evolution of the

forecast error.
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A model for forecast dynamics

A dynamic model for forecast evolution

In other words,

XT = Xte
√
θt N−

θt
2 , N ∼ N(0,1), θt =

∫ T

t
σ2

s ds + b2.

This ensures that Xt is the best prediction of XT given Xt : Xt = E[XT |Xt ].

We then assume that the forecast is the best prediction of the realized

production given the available information:

Ft(T ) = E
[
fprod (XT )|Xt

]
⇒ Ft(T ) = g(Xt , θt), t < T

where the function g has an explicit form.

The model fully describes the evolution of the forecast dynamics, while

ensuring that Ft(T ) ∈ [0,1] for all t .
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A model for forecast dynamics

Parameterization of the model

The model for forecast dynamics is determined by the function (θt) which is

roughly proportional to the variance of the forecast error Ft(T )− FT .

We use a parametric volatility function t 7→ σt :

σt = σ0eη(T−t)1t>T−τ∗ , θt =
σ2

0

2η

(
e2η(T−t) − 1

)
1t>T−τ∗ + b2

where τ∗ is the stopping time of the constant volatility.

The parameters are estimated using the method of moments by fitting the

empirical standard deviations of the forecast errors to those produced by the

model.
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A model for forecast dynamics

Estimating the volatility function

Non-parametric estimation of θ along with the fitted parametric curve.
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Left: estimated volatility function θ. More than τ∗ = 120h prior to production

date the forecast has no value. Right: empirical vs. model-generated density

of the forecast errors for 48h time horizon.
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Optimization of market interventions
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Optimization of market interventions

Framework

• We focus on the gain from selling electricity during a short time period

[T − δ,T ], where T is fixed.

• This electricity must be sold in advance, in different markets (spot,

forward, intraday), otherwise a penalty is applied for using the adjustment

market.

• Our aim: determine the optimal strategy of selling electricity for a wind

power producer who does not know the exact production but has

forecasts available.
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Optimization of market interventions

Market model

• Let Pt(T ) denote the forward price of one unit of electricity delivered at

time T , observed at time t .

• Denote by φt the aggregate position at time t (total quantity to deliver at

time T ).

• We assume that φ is increasing process with φ0 = 0 (only sales are

allowed), and that the trading starts at date 0.

• If, at date T , φT 6= FT , the agend must sell / purchase the extra energy at

price PT := PT (T ), and in addition pay a penalty equal to u(FT − φT ),

where u(0) = 0, u(x) is increasing for x > 0 and decreasing for x < 0.
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Optimization of market interventions

Why trade in different markets?

• There is insufficient market depth in the intraday market (or in other

words the market impact is so strong that one can only sell large amounts

of energy at a very low price).

• It is advantageous to sell in the forward market because the sale price in

the spot / intraday market is lower.

• By selling in the forward market, one reduces the risk associated to the

change in the price until the delivery date, since forward prices fluctuate

less than spot / intraday prices.

• On the other hand, selling in the spot/intraday market reduces the penalty

applied for not delivering the right amount.
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Optimization of market interventions

Future price dynamics
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Evolution of future price difference Pt(T )− P0(T ) as function of t , averaged

over one year, with 95% confidence bounds. Left: base futures. Right: peak

futures.
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Optimization of market interventions

Mathematical problem formulation

We assume that the forward price process satisfies

Pt(T ) =

∫ t

0
µsds + βtdWt ,

where µ and β are deterministic processes with µt typically negative.

Aim: maximize expected gain penalized by market impact

The problem is only affected by the randomness of the forecast

min
ψ≥0

E

[ ∫ T

0
φtµtdt︸ ︷︷ ︸

Expected loss from
trading in forward market

+
γ

2

∫ T

0
ψ2

s ds︸ ︷︷ ︸
Market impact
(ψ = φ′)

+u(FT − φT )︸ ︷︷ ︸
volume penalty

]
.
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Optimization of market interventions

Optimization in the presence of perfect forecast

In the presence of exact forecast, the problem becomes deterministic:

min
ψ≥0

[∫ T

0
φtµtdt +

γ

2

∫ T

0
ψ2

t dt + u(FT − φT )

]
.

In the examples below, we compare the deterministic solution for exact

forecast with the stochastic solutions with random probabilistic forecasts.

The forecast trajectories are simulated so that all forecasts correspond to the

same realized production
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Optimization of market interventions

Examples
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Sample selling strategies with market impact (but without price risk).

Strategies are updated dynamically as new information becomes available.
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Optimization of market interventions

Examples
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Left: realized penalty for different forecast quality.

Right: realized penalty as function of initial forecast.
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Optimization of market interventions

Summary

• We use the truncated log-normal distribution to describe the wind power

production;

• We propose a tractable dynamic model for the forecast errors

parameterized by a volatility function which we estimate from the data;

• We express the gain of a power producer taking into account the volume

risk, the price risk, and the production mismatch penalty;

• The optimal strategy is computed by solvinig numerically the HJB

equation;

• We assess the value of probabilistic forecasts by comparing the realized

gain with the case of exact forecast.
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Optimization of market interventions
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