
Why do we seek help from “big data” in nowcasting of 
precipitation? 

Data description,  
Introduction,  
Motivation 

Research presentation 



Radar Data 
Used here: 17 years of quasi-continuous records. 
Reflectivity at a resolution 4x4 km2, every 15min.
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Description of the CAPS SSEF ensembles.  All ensemble members, 
except one, assimilate radar data.

Physics options used in the ensemble: MP-Thompson (Thompson et al.,2008), Ferrier (Ferrier et al.,2002),WSM6 (Hong and 
Lim,2006), WDM6 (Lim and Hong, 2010), Morrison (Morrison et al.,2009), M-Y (Milbrandt and Yau,2005); PBL-MYJ (Janji 
1994),YSU (Hong et al.,2006),QNSE (Sukoriansky et al.,2005), MYNN (Nakanishi and Niino, 2006), ACM2 (Pleim,
2007);LSM-Noah (Tewari et al.,2004), RUC (Benjamin et al.,2004); SW -Dudhia(Dudhia,1989), RRTMG (Iacono et al.,2008), 
Goddard (Chou and Suarez,1999); lsls LW-RRTM (Mlawer et al.,1997),RRTMG (Iacono et al.,2008).

The NWP 
model data Year Forecast 

length
IC/LBC/PHYS MP only PB L only Miscellaneous

2008 30h 8 members;
MP : Thompson,
Ferrier, WSM6;

SW : Dudhia, Goddard;
PBL : MYJ, YSU.

;2.2VWRA-FRW--
CN :MP : Thompson,

SW -G oddard, PBL - MYJ;
all : LW -R RTM;

LSM -Noah.
2009 30h --

2010 30h

2011 36h

2012 36h

2013 48h

WRF-ARW V3.0.1.1;
CN :MP: Thompson,

SW -G oddard, PBL -MYJ,

all : LW -R RTM.
LSM -Noah;

SW -G oddard;

WRF-ARW V3.2.1;
CN :MP -Th ompson,

all : LW -R RTM,
PBL -MYJ, LSM -Noah;

Rad ar-D A 
cycl ed member(CC).

SW -G oddard;

WRF-ARW V3.1.1;
CN :MP: Thompson,,

all : LW -R RTM,
PBL -MYJ, LSM -Noah;

2 I C-o nly memb ers .

SW -G oddard;

WRF-ARW V3.3.1;
CN :MP -Th ompson,

all : LW -R RTM,
PBL -MYJ, LSM -Noah;

1 SK EB memb er.

SW -RR TMG;

WRF-ARW V3.4.1;
CN :MP -Th ompson,

all : LW -R RTMG,
PBL -MYJ, LSM -Noah;

1 m embe r M P 
coupled to radiation.

LSM : Noah, RUC.

8 members;
MP : Thompson,
Ferrier, WSM6;

SW : Dudhia, Goddard;
PBL  : MYJ, YSU;

LSM : Noah.

3 members;
MP : WDM6,

Ferrier, WSM6, Morr ison;
PBL  : MYJ;

LSM : Noah, RUC.

9 members;
MP : Thompson, WDM6,
Ferrier, WSM6, Morrison;

PBL  : MYJ, YSU,
QNSE, MYNN;

LSM : Noah.

2 members;
MP : Thompson;

PBL  : MYNN, QNSE;

LSM : Noah, RUC.

17 members;
MP : Thompson, WDM6, 

Ferrier (+) , WSM6,

PBL  : MYJ, YSU,
QNSE, MYNN, ACM2;

Morri son, M -Y;

LSM : Noah.

10 members,
MP : Thompson-v31, 

Ferrier ( 2), WSM 6 ( 5),

PBL  : MYJ;
Morri son, M -Y , WDM6;

LSM : Noah.

10 members;
MP : Thompson, 

PBL  : MYJ (4) , YSU
QNSE, MYNN, 

ACM2 ( 3), YSU-Thom pson;

LSM : Noah.

3 m embers,
MP : Morrison, 

PBL  : MYJ;
M-Y , WD M6;

LSM : Noah.

4 m embers;

MP : Thompson; 

PBL  : ACM2, YSU,
QNSE, MYNN;

LSM : Noah, RUC.

13 members;
MP : Thompson, WDM6, 

PBL  : MYJ, YSU,
QNSE, MYNN, ACM2;

Morrison, M -Y;

LSM : Noah.

6 m embers,
MP : WDM6, NSS L, 
Morrison, M -Y , WSM 6;

PBL  : MYJ;
LSM : Noah.

10 members;

MP : Thompson; 

PBL  : YSU, ACM2,
QNSE, MYNN;

-

Ming Xue



Mesoscale  nowcasting  in  the  past 
         (1 to 500 km)    (forecasting for 0 to 6h) 

In the beginning there were analogues: 
“BIG DATA” was in a forecaster’s memory  (accumulated experience for 

situations analogous to the present) and the processing algorithms were 

conceptual models. 

Conceptual models: 
a complex problem reduced to a system with few proxy variables. 

Best example in my memory:  

Hector Grandoso forecasting occurrence of hailstorms in Mendoza



Then computers became more and more powerful:  
NWP became the future. 

Models became better, numerical methods improved, more and more physics 

was added… 

Then, deterministic chaos cast a shadow, model errors became an issue,  

physical parameterizations are always poor approximations to reality,  

nature is constantly perturbed at the smaller scales and runs away from 

model predictions…. 

Ensemble forecast accounted for uncertainties, dada assimilation would 

correct the drift the NWP shortcomings. 

Forecast improved continuously over time (at least at 500mb)! 

AND ALL THE WHILE, MESOSCALE PRECIPITATION STUBBORNLY REFUSED 
TO BE WELL PREDICTED QUANTITATIVELY 

WHAT IS THE PRESENT SITUATION? 



Surcel, M , et al, 2015: A study on the scale-dependence of the 
predictability of precipitation patterns, J. Atmos. Sci., 72, 216-235.

Madalina Surcel

Methodology in a nutshel: 
1- take 1-h accumulations of precipitation patterns, form radar and model forecasts 
2- decompose by scale, λ  
3- compare these patterns scale by scale (band-pass)  
4- from this comparison determine λ0, the scale at which predicability is totally lost 
as a function of lead time:  

That is, at λ0 forecast and verification are totally decorrelated.
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NWP wthout Radar Data Assim. veryfied by observations 

NWP with Radar Data Assim. veryfied by NWP (intrinsic)

NWP with Radar Data Assim. veryfied by observations 
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NWP wthout Radar Data Assim. veryfied by observations 

NWP with Radar Data Assim. veryfied by NWP (intrinsic)

NWP with Radar Data Assim. veryfied by observations 
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Methodology in a nutshel: 
1- take 1-h accumulations of precipitation patterns, form radar and model forecasts 
2- decompose by scale, λ  
3- compare these patterns scale by scale (band-pass)  
4- from this comparison determine λ0, the scale at which predicability is totally lost 
as a function of lead time:  

That is, at λ0 forecast and verification are totally decorrelated.

Observations contribution from errors in observations



Limits to Mesoscale Predictability

Summary of model validation with radar data: 
With no radar data assimilation scales smaller than ~300km are not predictable 

Effect of Radar Data Assimilation lasts forever, but the improvement in skill 
(small) lasts up to ~4h lead time (roughly as the spin-up time)

Madalina Surcel
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FOR PRECIPITATION, BEYOND THESE SHORT LIMITS AND SMALLER SCALES 
THERE CAN ONLY BE PROBABILISTIC FORECASTING / NOWCASTING.



Can we improve short term forecasting 
of precipitation with the available long 
term radar records and model outputs? 

Isztar Zawadzki, McGill University, Presenting work of: 

Aitor Atencia Ruiz de Gopegui Bernat Puigdomènech Treserras

And many thanks to M.K. Yau and F. Fabry for comments and support



BACK TO ANALOGUES 
(but now with data instead of subjective experience) 

__________________________ 

Probabilistic Nowcasting of Precipitation 
Using “Analogues” (Similar Patterns); 

 Preliminary Comparison with NWP.



For every radar map similar patterns were searched in 17 years of 
radar archives.  Similarity is defined by a decision-tree comprising 
the following criteria:  

1. Spatial cross-correlation between Rainfall patterns 

2. Location to account for Geographical factors 

3. Temporal correlation to select for similarity of Motion & 
Evolution of patterns 

4. Time of the day and year to account for the Diurnal and 
Annual cycles

Analogue selection criteria



5- Synoptic situation to account for influence of 
Large scale forcing

There are three main factors needed for rainfall 
occurrence: instability, moisture and forcing. 
 

The variables more appropriate were found to be: 

temperature, Τ at 50 kPa,  
specific humidity at 70 kPa and  

pressure vertical velocity, ω at 85 kPa. 

Analogue selection criteria



5- Synoptic situation to account for influence of 
Large scale forcing

There are three main factors needed for rainfall 
occurrence: instability, moisture and forcing. 
 

The variables more appropriate were found to be: 

temperature, Τ at 50 kPa,  
specific humidity at 70 kPa and  

pressure vertical velocity, ω at 85 kPa. 

Analogue selection criteria

Why these 7 parameters? Because this is the conceptual model framework to 
which we are used and we understand, and black-box approach like SOM did 

not work for precipitation patters.  Surely it can be refined.



For all criteria the degree of similarity between 
the observation and the analogue candidate is 
determined by the desired ensemble number of 
“analogues” available in the records. 

The number of “analogues” can be adjusted so 
that the ensemble is not over nor under-
dispersive.  The latter can be evaluated by the 
nowcast of the previous time. 

Thus, the procedure can be made adaptable to 
the situation.

Analogue selection criteria

10.0

17.5

25.0

32.5

40.0

47.5

55.0

62.5

70.0

R
ef

le
ct

iv
ity

 [d
BZ

]

 

-100 -95 -90 -85 -80 -75
Longitude

30

35

40

45

50

La
tit

ud
e

OBSERVATION

10.0

17.5

25.0

32.5

40.0

47.5

55.0

62.5

70.0

R
ef

le
ct

iv
ity

 [d
BZ

]

 

-100 -95 -90 -85 -80 -75
Longitude

30

35

40

45

50

La
tit

ud
e

CANDIDATE



Example of Analogues



Example of Analogues

From these 26 patterns we determine a map of probability of 
precipitation occurrence 



Example of 22 May 2013

Comparison of Probability of Precipitation
Maps of probability of precipitation derived from 26 members ensembles. 

Green contours are radar verification 

Analogues ensemble OU model ensemble
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and they are either 1 or 0 depending whether an event occurred or not.280

• ROC area score: This score is the area under the ROC curve. ROC stands for Relative281

Operating Characteristic and it is a plot of the Probability of Detection (POD) versus282

the False Alarm Rate (FAR). These two scores are contingency-table scores that are283

based on dichotomous forecasts (Dobryshman 1972). A dichotomous forecast indicates284

whether an event has occurred or not at each point of the grid and it is specified by285

the exceedance of a certain threshold. In this study 15 dBZ (0.3 mm) is the selected286

threshold. The four combinations of forecasts (yes or no) and observations (yes or no)287

are hit, miss, false alarm and correct negative. The two scores used to define the ROC288

curve are computed as:289

POD =
hit

hit + miss
(3)

290

FAR =
false alarm

false alarm + correct negatives
(4)

These indices are computed by using a set of increasing probability thresholds (for291

example, 0.05, 0.15, 0.25, etc.) to make the yes/no decision for the ensemble forecast.292

The ROC area score’s range takes values from 0 to 1. 1 stands for a perfect forecast293

and values lower than 0.5 indicate no forecast skill.294

• The spread of an ensemble of members at a particular forecast time step is measured295

as:296

Spread =

vuut 1

N
p

(N
m

� 1)
·

NpX

i=1

NmX

j=1

(f
ij

� f̂
i

)2 (5)

where N
p

is the total number of points of the domain, N
m

is the number of ensemble297

members, f
ij

stand for i pixel of the jth ensemble member (F
j

) and f̂
i

is the mean of298

the ensemble members at a given pixel i.299

12

Answers the question: What is the ability of the 
forecast to discriminate between precipitation 
events and non-events? 

Range: 0 to 1.   0.5 = no skill.          Perfect score: 1

ROC Area = POD d(FAR)∫
Relative Operating Characteristic, ROC:

Skill Comparison (probability)
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(For 26 events from 31st April to 12th June and 26 members ensembles)
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Even though the patterns were different, the probability map 
have a reasonable performance with both techniques.
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Answers the question: What is the 
magnitude of the probability forecast errors? 

Range: 0 to 1              Perfect score: 0

Brier Score = 1
N
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The differences are statistically significative.

(For 26 events from 31st April to 12th June and 26 members ensembles)

Analogues have more information on the probability and intensity of precipitation.
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Do analogues ensembles forecasts cover 
observations? Skill-Spread Ratio

(For 26 events from 31st April to 12th June and 26 members ensembles)
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Analogues

Over-dispersive

Under-dispersive
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Do analogues ensembles forecasts cover 
observations? Skill-Spread Ratio

The small under-dispersivity is perhaps due 
to the limited number of ensemble members

(For 26 events from 31st April to 12th June and 26 members ensembles)
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Do model ensembles forecasts cover 
observations? Skill-Spread Ratio

(For 26 events from 31st April to 12th June. For 26 members ensembles, 

and for 15 most dispersive members)
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Do model ensembles forecasts cover 
observations? Skill-Spread Ratio

(For 26 events from 31st April to 12th June. For 26 members ensembles, 

and for 15 most dispersive members)

And it is not bias. It is hard to get model 
ensembles sufficiently dispersive.
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NEXT 
True analogues: close 
states on an attractor.



The Lorenz attractor 

As a 3-D trajectory with 
2-D projections

o

The X-Y projection of 
a sparse attractor
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The trajectory of the LA attractor is obtained by solving three differential 

equations.   

If the time of each point of the trajectory is recorded the equations are no 

longer needed.  The attractor is “DATA” 

Starting from the red point we can obtain the future trajectories (red) of all 

the analogues within the point.  This is the analogues ensemble forecast.

Forecasting with the attractor
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The trajectory of the LA attractor is obtained by solving three differential 

equations.   

If the time of each point of the trajectory is recorded the equations are no 

longer needed.  The attractor is “DATA” 

Starting from the red point we can obtain the future trajectories (red) of all 

the analogues within the point.  This is the analogues ensemble forecast.
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An ensemble forecast of x at time tf   is made by choosing a set of close values on the 

attractor around x(t0), y(t0), z(t0), the ANALOGUES, and then following the evolution of 

the ensemble average of x as well as their spread in time until the forecast time tf.



The trajectory of the LA attractor is obtained by solving three differential 

equations.   

If the time of each point of the trajectory is recorded the equations are no 

longer needed.  The attractor is “DATA” 

Starting from the red point we can obtain the future trajectories (red) of all 

the analogues within the point.  This is the analogues ensemble forecast.

If the equations for a system are known it may be more practical to get a solution 

every time a forecast is needed than have the huge table for all the solutions.   

But, for the atmosphere we ignore the exact equations.  Moreover, we cannot 

compute all the solutions from the equations we have. 
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What happens if we only have a reduced dimension? 
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The value of the forecast by analogues-ensemble is measured by 

the distance of the curve to the RMS of climatology.
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Even if the dimension of the attractor is reduced (from 3 to 2 

in this case) the information may have practical value.

141 analogues on 
the 2_D attractor
(Reduc. dim. anal.)

The value of the forecast by analogues-ensemble is measured by 

the distance of the curve to the RMS of climatology.
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Must we know the exact variables of the phase space?

0

We can taylor the attractor to fit our needs.  Say, we want to 

forecast the mean of x,y,z, the eccentricity of x,z, [z2/(x2+z2)]½, and 

the euclidian distance between x and y.  From the original attractor 

we can construct an attractor in these coordinates:
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The attractor conserves all its characteristic. 

WE CAN USE PROXY VARIABLES TO DEFINE THE PHASE SPACE
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Is this low order system relevant for Nowcasting of 
such a high order system as precipitation?

Consider the attractor as the climatology of the 

system represented as the joint probability of 

the phase-space variables, p(x|y|(z). The 

number of variables can be reduced, or use 

proxy variables, and still the ensemble of 

analogues will have predictive value. 101
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OUR GOAL IS TO EXPLORE THE USE OF RADAR DATA, TOGETHER 

WIH OTHER DATA, TO CONSTRUCT A CLIMATOLOGY OF THE JOINT 

PROBABILITY OF RELEVANT VARIABLES, WHICH WE WILL CALL 

“RAIN ATTRACTOR” AND STUDY ITS NOWCASTING POTENTIAL
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OUR GOAL IS TO EXPLORE THE USE OF RADAR DATA, TOGETHER 

WIH OTHER DATA, TO CONSTRUCT A CLIMATOLOGY OF THE JOINT 

PROBABILITY OF RELEVANT VARIABLES, WHICH WE WILL CALL 

“RAIN ATTRACTOR” AND STUDY ITS NOWCASTING POTENTIAL

What are “RELEVANT VARIABLES”?  

 Here we go back to conceptual models and Hector Grandoso. 



A first attempt at a “Rain Attractor”

From 17 years of continental composites of precipitation patterns we 

can construct a 5-D (sparce) RAIN ATTRACTOR.  The phase space we 

use is comprised of one thermodynamic variable and 4 statistical 

properties of the pattern: 

70-50 kPa thickness (every 3h, from reanalysis), 

Area of precipitation,  

its Eccentricity,  

Marginal Mean reflectivity,  

Decorrelation time. 

Here we will use all variables or a smaller dimension subset of them.
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Density Projections of a 5-D 
Rain Attractor
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The other Projections of the Rain Attractor

For this 4-D attractor:
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Trajectories on the Rain Attractor
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Forecast and Ensemble Spread  
on the Rain Attractor

How does it work? Say, at the present time we have only marginal mean (MM).  
1-Select in the 1-D attractor 250 cases with the closest MM 

We see that there is a skill better than climatology for ~2 days.
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Forecast and Ensemble Spread  
on the Rain Attractor

1-Select in this 4-D attractor 250 cases with the closest values of these 4 parameters 
2-Make the average ensemble forecast 
3-Measure the ensemble spread

ForecastEnsemble spread
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Now add to MM the Area, Eccentricity and Decorrelation Time of the pattern.

We see that the skill is much better than climatology for ~10 days.



Forecast and Ensemble Spread  
on the Rain Attractor

1-Select in this 3-D attractor 250 cases with the closest values of the 3 parameters 
2-Make the average ensemble forecast 
3-Measure the ensemble spread

ForecastEnsemble spread
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Now we take the 50-70 kPa Thickness, MM, and Decorrelation Time.

We see that the skill is much better than climatology for ~30 days and longer.



Comparison of Performance
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Not surprisingly, attractor analogues are better at predicting Area and 

Marginal Mean that similar patterns.  They were tailored for this purpose!



And the average of 24 days:
24 days x 26 analogues
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This attractor approach is now moving to Switzerland where it became part 

of an SNSF AMBIZIONE project (Urs German, Loris Foresti). 

 Combination with satellite data, surface data, orography; 

 Search for the smallest most effective phase space (principal components?) 

 State dependence 

….. 

A PhD position available

This was a first exploration of the “Rain 
Attractor”.  It looks promising.

NEXT:



THANK YOU 


