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Data Assimilation - Overview

Data Assimilation is the entire sequence of operations that, starting from the

observations and possibly from a statistical/dynamical knowledge about a system,

provides an estimate of its state

The main fields of applications in geophysics are:

initialize weather prediction

produce reanalysis

parameter estimation
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Data Assimilation - Methods Problem Statement

Basic Definitions and Problem Statement

OBJECTIVE:
estimate the state of an unknown system based on an imperfect model and

a limited set of noisy observations:

xk = Mk(xk−1) + µk k = 1, 2, ...,

yok = H(xk) + ε
o
k k = 1, 2, ...,

yo ∈ Rp and x ∈ Rn - p ≪ n in realistic geophysical applications

{µk}k=1,2... and {εok}k=1,2... assumed to be random error sequences, white in time, and uncorrelated between them

Collect state estimates and observations as: Xk = {x0, x1, ..., xk} and Y0
k = {y00, y

0
1, ..., y

0
k}

Smoothing, Filtering or Prediction ?

1 Smoothing → Estimate the state at all times ≡ Xk based on Y0
k

2 Filtering → Estimate the state at the present time ≡ xk based on Y0
k−1

3 Prediction → Estimate the state at future times ≡ xk>l based on Y0
l
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Data Assimilation - Methods Problem Statement

Probabilistic Approach

In the probabilistic framework, problems (1)-(2)-(3) are expressed as the
estimation of the corresponding conditional probability density functions:

1 Smoothing → Estimate P(Xk |Y
0
k)

2 Filtering → Estimate P(xk |Y
0
k−1)

3 Prediction → Estimate P(xk>l |Y
0
l )

The PDFs P fully characterise the estimation problem!

The error PDFs associated to all the information sources read:

P(x0) PDF of the initial conditions - Prior

P(µk) = P(xk −Mk(xk−1)) = P(xk |xk−1) - Model Error PDF

P(εok) = P(y0k −H(xk)) = P(yk |xk) - Observational Error PDF
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Data Assimilation - Methods Problem Statement

Probabilistic Approach

With Bayes’s rules....
SMOOTHING

P(Xk |Y
0
k) ∝ P(x0)Π

k
i=1P(xi −Mi (xi−1))P(y0i −H(xi))

FILTERING

In high-dimensional nonlinear systems the full Bayesian formulation is not affordable

Note: The Particle Filters attempt to solve this problem and their potential application in geoscience has received much
attention in recent years. See van Leuween, 2009 (MWR) for a review and the Philippe Naveau’s talk in this workshop.
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Data Assimilation - Methods Variational Assimilation

4D-Variational Assimilation

Initial condition, observational and model errors are all Gaussian and mutually
uncorrelated =⇒ solving the SMOOTHING problem leads to the 4DVar
formulation, i.e. minimise a penalty function as:

2J =

k
∑

i=1

µ
T
i Qi

−1
µi +

k
∑

i=1

[y0i −H(xi)]
TRi

−1[y0i −H(xi )]+(x0−xb)
TB−1(x0−xb)

B - Background error covariance matrix

R - Observational error covariance matrix

Q - Model error covariance matrix

Alberto Carrassi (CFU-IC3) DA - Methods, Concepts & Challenges 15 October 2012 7 / 30



Data Assimilation - Methods Variational Assimilation

4D-Variational Assimilation

The sequence (trajectory) Xk which minimizes J is the maximum likelihood estimator of the PDF P(Xk |Y
0
k )

It provides the ”best” possible fit to the observations, given the initial guess and the imperfect model

The strong-constraint 4DVar makes the assumption of perfect model and the latter is appended as a strong-constraint
when doing the minimization

The minimization of J can be done in principle by solving the associated Euler-Lagrange (EL) equations (Le Dimet and
Talagrand, 1986 Tellus)

The Method of Representer is an efficient way to solve the EL eqs for linear dynamics (Bennett, 1982, chapter 5)

Descent Methods are used in the case of large nonlinear systems (Talagrand and Courtier, 1987 QJRMS)

The choice of the Control Variable defines the size of the problem to be solved and characterises different formulations
of the 4DVar (see e.g. Tremolet, 2006 QJRMS; Bocquet, 2009 MWR)

B is implicitly evolved within the assimilation window but it is not available for the next analysis cycle

When observations are assimilated (as they were) at the same time the 3DVar is recovered

4DVar (under ”strong” simplified assumptions) is operational in several weather services, among them MetOffice and
ECMWF.

time

3DVar 4DVar

timeτ τ

x
b x

b

x
a

x
a

yo
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Data Assimilation - Methods Sequential Assimilation

Sequential Assimilation

Under the same hypotheses of Gaussianity and mutual uncorrelation of errors the
filtering problem reduces to the estimation of the mean and covariance.

ANALYSIS UPDATE EQUATIONS

xak = xfk +Kk

[

yok −Hk(x
f
k)
]

Pa
k = [I−KkHk ]P

f
k

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1

xak - Analysis state at time tk

xfk = M(xfk−1) - Forecast state at time tk

Pf - Forecast error covariance matrix

R - Observational error covariance matrix

K - Kalman gain matrix

The analysis xa is optimal in the sense that it minimizes the analysis error variance

When all errors are Gaussian the minimum variance estimate is also the maximum likelihood estimate (out of
unimodality maximum likelihood estimators are of questionable relevance)
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Data Assimilation - Methods Sequential Assimilation

Kalman Filter (KF) and Extended KF

For linear dynamics and observational operator the KF provides a closed set of
estimation equations (Kalman, 1960). The forecast step equations read:

xfk = Mxfk−1 + µk

Pf
k = MkP

a
k−1M

T
k +Qk

Extension to nonlinear dynamics - Extended Kalman Filter
The extended Kalman Filter (EKF) is a first order approximation of the KF
The tangent linear model is used to forward propagate the forecast uncertainty (i.e. the error covariance)
The full nonlinear model is used to evolve the state estimate
The analysis update is the same as in the standard KF
The introduction of the EKF in geoscience is due to Ghil and Malanotte-Rizzoli (1991) AdvGeohys

The EKF response to different degree of nonlinearity has been studied in Miller, Ghil & Gauthiez (1994) JAS

The EKF is almost-operational for ECMWF soil analysis (de Rosnay et al., 2012 QJRMS)
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Data Assimilation - Methods Sequential Assimilation

Ensemble Based Data Assimilation Algorithms

In the ensemble-based DA the forecast/analysis error covariances are
approximated using an ensemble of M model trajectories

Ensemble based covariances Pf ,a = 1
M−1

∑M
i=1(x

f ,a
i

− x̄f ,a)(x
f ,a
i

− x̄f ,a)T

For the approach to be suitable in geoscience M ≪ n

Flow dependent description of the forecast error
The Kalman gain is computed in the observation space reducing the computational cost at a rate given by the ratio

between the number of observations and the system size, p/n, Pf HT = 1
M−1

∑M
i=1(δx

f
i Hδxfi )...

Provide automatically a set of initial conditions for ensemble prediction schemes.
The choice of the forecast-analysis transformation characterises the ensemble-based algorithms.
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Data Assimilation - Methods Sequential Assimilation

Stochastic or Deterministic ?

Ensemble data assimilation algorithms can be divided into Stochastic and
Deterministic

Stochastic (Monte-Carlo approach)
In this class of algorithms the observations are treated as a random ensemble by adding noise at each analysis update

Each ensemble trajectory assimilates a different realization of the observation vector and undergoes an independent
analysis update

The standard Ensemble Kalman Filter (EnKF) belongs to this family (see e.g. Houtekamer and Mitchell, 1998 MWR)

The EnKF has proved efficiency in a number of geophysical applications (see Evensen, 2003 Ocean Dyn for a review)

Deterministic (Square-Root approach)

In this class of algorithms the step Pf → Pa is made through a linear transformation T

It avoids the introduction of extra noise at the analysis update

T is usually defined under the constraint that Pa matches some desired value (i.e. the EKF one, the Hessian of a
penalty function)

The solution (a square-root matrix) is not unique and the particular choice characterises the algorithm (see Tippet et
al., 2003 MWR).

Algorithms belonging to this family: ETKF, LETKF, EnSRF, MLEF (see Whitaker and Hamill, 2002 MWR; Bishop et

al., 2001 MWR; Hunt et al., 2007 Physica D)
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Data Assimilation - Methods Sequential Assimilation

Ensemble-based or Variational: the comparison

Results with a Quasi-Geostrophic model by Rotunno and Bao, 1996
Ensemble-based scheme =⇒ Local Ensemble Transform Kalman Filter (Hunt et al., 2007 Physica D)

From Yang,Corazza,Carrassi,Kalnay & Miyoshi, 2009 MWR
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Dealing with Geophysical Systems

Dealing with Geophysical Systems

When dealing with realistic Atmosphere/Ocean dynamics DA faces a number of
obstacles....

Huge dimension ⇒ Computationally suitable solutions ...

The Atmosphere and the Ocean are example of nonlinear chaotic systems

Chaos implies (among other things !) high flow dependent variability of
error dynamics ⇒ Flow-dependent description of the error entering the
estimation is required

Sources of nonlinearities: model M, obs operator H, first guess B

Nonlinearities push out of Gaussianity ⇒ Non-Gaussian analysis frameworks
(for a complete review see Bocquet, Pires & Wu, 2010 MWR)

Solutions have been proposed in the framework of both Variational and Ensemble
schemes ....
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Dealing with Geophysical Systems Dealing with Geophysical Systems – Variational

How to deal with geophysical systems: Variational
Main Drawbacks of Variational Approach:

1 Non-Quadratic cost-function in 4DVar

2 with possible Multiple Minima

3 maximum likelihood approach questionable

4 No flow-dependent error description

Proposed Solutions:

Problem (1) and (2) are alleviated in the Incremental 4DVar (Courtier et al., 1994 QJRMS).

From Andersson et al., 2005 ECMWF-Tech.Rep. 479
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Dealing with Geophysical Systems Dealing with Geophysical Systems – Variational

How to deal with geophysical systems: Variational

Problem (4) is implicitly overcome with the Long Window 4DVar but ... problems (1)-(3) can be made worst

Problems (1)-(3) are partly solved using the Weak-Constraint 4DVar but ... appropriate model error covariances need to
be prescribed and the size of the control variable too big (see e.g. Trémolet, 2006 QJRMS)

Hybrid 3/4DVar-Ensemble algorithms attempt to tackle all problems at the same time (see Barker and Clayton, 2011
ECMWF Ann. Seminar for a review and for details on the operational implementation at MetOffice).

Example: ETKF ↔ 4DVar at MetOffice (from Barker and Clayton, 2011 ECMWF Ann. Seminar)

Two hybrid strategies:

- Hybrid 4DVar operational at MetOffice (Use a combination of static and ensemble cov at the initial time)
- 4D-Ensemble-Var mid-long term development (Use ensemble cov within the entire assimilation window ⇒ No need for
Tangent/Adjoint model) See Buehner et al., 2010 MWR

From Barker and Clayton, 2011 ECMWF Ann. Seminar
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Dealing with Geophysical Systems Dealing with Geophysical Systems – Ensemble Schemes

How to deal with geophysical systems: Ensemble Schemes

Main Drawbacks of Ensemble Based Approach:

1 Sampling Error (M O(100))

2 Use only observations at analysis time

3 Only the Gaussian approximation of the flow-dependent Pf is accounted for at the analysis update

Proposed Solutions:

Sampling errors (problem (1)) are mitigated using Covariance Localization ⇒ Effective increase the rank of Pf ; but:
- dynamical consistency is broken
- the actual optimal size for the localization is time-dependent ⇒ Flow-Dependent Covariance Localization (Bishop and
Hodyss, 2011)

Variance Underestimation (still problem (1)) ⇒ Multiplicative or Additive Inflation
Multiplicative Inflation (See e.g. Anderson and Anderson, 1999 MWR):

- Pf → (1 + α)Pf

- keep the same rank/structure of Pf , only the explained variance is modified
- the inflation can be made adaptive ⇔ more inflation where/when required: based on Kalman gain (Sacher and
Bartello, 2008 MWR), on analysis error variance (Whitaker and Hamill, 2012 MWR)
Additive Inflation:
- add random noise to Pf or Pa

- the process introduce new structures in the error space spanned by the ensemble covariances
- a combined additive/multiplicative scheme has been proposed by Zhang et al., 2004 MWR
- an ensemble based algorithm without the need of inflation has been proposed recently (Bocquet, 2011 NPG)

An Hybrid approach is used to deal with problem (2) ⇒ Several ensemble schemes introduce the time dimension to
assimilate observations simultaneously over a given reference period (see e.g. Hunt et al., 2004 Tellus; Zhang and
Zhang, 2012 MWR)

Solution to problem (3) ⇒ Particle Filters but ....
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Data Assimilation for chaotic dynamics Optimal Ensemble Size for Deterministic Filters

exploiting chaos... → optimal ensemble size

Can the ensemble size be designed based on the system dynamical properties ?

Adapted from Sakov and Oke, 2008 MWR

Lorenz 1996 Model

Main finding: The ETKF converges to low error level when Nens ≥ KYdim reaches the model subspace dimension

This behavior is deeply different from the EnKF whose performance improves indefinitely when Enssize → ∞

With another deterministic filter (MLEF, Zupanski, 2005 MWR), without inflation, Carrassi et al., 2009 (Tellus) found a
similar behavior (error saturation when Nens ≥ KYdim)

Bocquet, 2011 (NPG) introduced a new deterministic filter (ETKF-N) that does not need inflation as long as

Enssize > N+

In deterministic filters ensemble perturbations reflect the intrinsic system error dynamics and have to be intended as
factorization of the system’s error covariance rather than its Monte Carlo approximation as in the EnKF
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Data Assimilation for chaotic dynamics Assimilation in the Unstable Subspace

exploiting chaos...→ Target Observations

Assimilation in the Unstable Subspace (Trevisan and Uboldi, 2004 JAS)

Application with target observations – Strategy: Breeding on the Data Assimilation System BDAS (Carrassi et al., 2007 Tellus)

Quasi-geostrophic atmospheric model (Rotunno and Bao, 1996 MWR)
Perfect model setup - Observation Dense area (1-20 Longitude) - Target Area, one obs between 21-64 Longitude

Experiment Ocean Obs Type Ocean Obs Location Ocean Obs Assimil RMS Error

LO - - - 0.462
FO sounding fixed (x=42, y=16) 3DVar 0.338
RO sounding random 3DVar 0.311

3DVar-BDAS sounding BDAS 3DVar 0.184
AUS-BDAS temperature BDAS AUS 0.060
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Data Assimilation for chaotic dynamics Assimilation in the Unstable Subspace

exploiting chaos...→ DA as nonlinear stability problem

Can efficient DA methods be constructed to achieve the asymptotic stabilization
of the system ?
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From Carrassi, Ghil, Trevisan & Uboldi, 2008 CHAOS

DA provides a stabilizing effect (compare 3DVar with free system Lyapunov spectrum) but ...

if the DA is designed to kill the instabilities, the estimation error is efficiently reduced
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Data Assimilation for chaotic dynamics Assimilation in the Unstable Subspace

exploiting chaos...→ Hybrid 3DVar - AUS

Enhancing the performance of a 3DVar by using AUS
Comparison with EnKF
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Adapted from Carrassi, Trevisan, Descamps, Talagrand & Uboldi, 2008 NPG
A network of randomly distributed obs (vertical soundings)
3DVar-AUS: (1) AUS assimilate the obs able to control an unstable mode; (2) 3DVar process the remaining obs
3DVar-AUS comparable to EnKF with only one BDAS mode ⇒ Reduced computational cost and implementation on a
pre-existing 3DVar scheme
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Data Assimilation for chaotic dynamics Assimilation in the Unstable Subspace

exploiting chaos...→ 4DVar-AUS

4DVar-AUS: The analysis increment is confined in the unstable and neutral subspace by applying to 4DVar the AUS constraint
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From Trevisan, D’Isidoro & Talagrand, 2010 QJRMS

Lorenz 40 variables
The assimilation is performed in a subspace of dimension N = N0 + N+

When N = n, the standard 4DVar is recovered
The error of 4DVar-AUS is smaller than the error of 4DVar, particularly for short assimilation windows, when the errors
in the stable directions are not yet damped
It exists an optimal subspace dimension for the assimilation that is approximately equal to N+ + N0

4DVar-AUS does not need tangent/adjoint model
See Trevisan & Palatella 2011 NPG for the EKF-AUS and Palatella, Carrassi & Trevisan, 2012 JPA for a review of the
AUS algorithms
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Frontiers: Seasonal-to-Climate Prediction Climate Prediction Error

Climate Prediction Error

Relative importance of error sources in climate prediction

From Hawkins & Sutton, 2009 BAMS

For time horizons of many decades or longer, the dominant sources of uncertainty at regional or larger spatial scales are
model uncertainty and scenario uncertainty.
For time horizons of a decade or two, the dominant sources of uncertainty on regional scales are model uncertainty and
internal variability.
The importance of internal variability increases at smaller spatial scales and shorter time scales.
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Frontiers: Seasonal-to-Climate Prediction Climate Prediction and Parameter Estimation

Climate Prediction and parameter estimation

From Kondrashov, Sun & Ghil, 2008 MWR

Intermediate Atmosphere-Ocean Coupled Model of the tropical Pacific Ocean

Prognostic Upper Ocean coupled with a Diagnostic Atmosphere

Uncertain parameters: relative coupling coefficient µ and surface layer coefficient δs

State Augmented EKF for state and parameter estimation

Synthetic Observations of SST

Parameter Estimation is nowadays of central importance in Data Assimilation (see talk by J. Ruiz)
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Frontiers: Seasonal-to-Climate Prediction Initialization of climate prediction

Initialization of long-term predictions

From Magnusson et al., 2012 ECMWF Tech Memo 676

Full-Field Initialization - FFI

Anomaly Initialization: Observed anomalies are added to model climatology - AI

FFI reduces RMSE in the short-term but it requires a bias-reduction approach to reduce the drift

AI maintains the model trajectory on its own attractor so that drift is reduced but bias is strong

A surface flux correction is designed a-priori to reduce model biases (Magnusson et al., 2012 ECMWF Tech Memo 676)
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Frontiers: Seasonal-to-Climate Prediction Initialization of climate prediction

Nudging Experiments with Ec-Earth climate model
Atlantic Meridional Overturning Circulation

0 50 100 150 200 250 300 350

12
14

16
18

20

Atl MOC (30N−40N) − from 1960−11

month

S
v

NEMOVAR
Full Ocean (b03p)
Upper Ocean [< 2000mt] (b03q)
No Trop − No Poles (b03r)
No Trop
No Poles
i00k
Historical (b02p)

0 50 100 150 200 250 300 350

−
6

−
4

−
2

0

Error − Atl MOC (30N−40N) − from 1960−11

month

S
v

0 50 100 150 200 250 300 350

10
15

20

Atl MOC (40N−55N) − from 1960−11

month

S
v

0 50 100 150 200 250 300 350

−
14

−
10

−
8

−
6

−
4

−
2

Error − Atl MOC (40N−55N) − from 1960−11

month

S
v

Acknowledgments to V. Guemas, D. Volpi and F. Doblas-Reyes of the CFU team

Ocean Nudging toward Temperature and Salinity

Relaxation time: 1/10 days−1 (below mix-layer and 800 mt); 1/2 years−1

Observation DataSet: NEMOVAR reanalysis
Classical Nudging Approach is adopted here. See Auroux & Blum, 2008 NPG for a novel advanced nudging technique.
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Frontiers: Seasonal-to-Climate Prediction Initialization of climate prediction

Nudging Experiments with Ec-Earth climate model
Reconstruction of Ocean Temperature

Historical Run
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Global Ocean Nudging
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Ocean Nudging − No Tropics
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Equatorial Vertical Section of Temperature Error. Averages are taken over the period 1985-1990.

Acknowledgments to V. Guemas, D. Volpi and F. Doblas-Reyes of the CFU team
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Frontiers: Seasonal-to-Climate Prediction Initialization of climate prediction

Nudging Experiments with Ec-Earth climate model

Historical Run
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Global Ocean Nudging
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Ocean Nudging − No Tropics
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Ocean Nudging − No Poles
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Longitudinal (30W) Vertical Section of Temperature Error. Averages are taken over the period 1985-1990.
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Prospects

Prospects

Data assimilation for system possessing many scale of motions.
Lorenc & Payne, 2007 QJRMS for variational scheme. What about
ensemble-based algorithms ?

Treatment of model error ...

Design of computationally suitable algorithms for the initializations of
seasonal-to-decadal prediction

Parameter estimation approach for the online reduction of bias in
long-term forecast

Advanced nudging techniques are they feasible for initializing climate
predictions ?
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Prospects

exploiting chaos...→ EKF-AUS

EKF-AUS: The analysis is performed in a manifold of dimension N = N0 + N+
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EKF (full circles), EKF-AUS (empty circles). From Trevisan & Palatella, 2011 NPG

Lorenz 40 variables

EKF-AUS belongs to the family of square-root implementations of the Extended Kalman Filter

The assimilation is performed in a manifold of dimension N = N0 + N+ .

When N = n the standard EKF is recovered

When N = N+ + N0 the reduced form, with Assimilation in the Unstable Subspace (EKF-AUS) is obtained.

See Palatella, Carrassi & Trevisan, 2012 JPA for a review on the AUS algorithms
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