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e Detection and Attribution

* The context: IPCC statements
* D&A definitions
* Non-optimal and optimal approaches

* Quick look at methodologies at the non-optimal end of the
spectrum and an example (Santer et al., 2007)

* Francis Zwiers to tackle optimal D&A methodology in the next talk.
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IPCC AR4, WG1.:
Warming of the climate system is unequivocal as is now evident

from observations of increases in global average air and ocean

temperatures, widespread melting of snow and ice and rising global
mean sea level.

Of course this statement does not address the causes of the
observed warming.

In order to do attribution we need to assess whether the observed
changes are

v’ consistent with the expected responses to external forcings

v’ inconsistent with alternative explanations

QD



D&A

Detection: the process of demonstrating that changes in a system’s
behavior are statistically significant beyond what can be explained by
internal (natural) variability alone.

Attribution: the process of determining, when possible quantifying, the
relative contribution of multiple factors that may be responsible for those
changes, and assigning a level of confidence to this comparative
evaluation.

The factors of interest are external influences, which we distinguish as
anthropogenic (GHGs, aerosols, ozone precursors, land use) and natural
(volcanic eruptions, solar cycle modulations)

QD



D&A Methodology

D&A methods seek to determine whether an
anticipated signal (pattern of change) is present in
observations

Models play a central role because they are used

— to estimate the signals, as expected responses to external
forcing, and

— to estimate the amplitude of the background internal variability
that is also present in observations, the noise.

QD



D&A Methodology

Usually the assumptions are that

Signal and noise are additive

Signal components are additive (i.e., the responses to
different external forcings add-up linearly)



D&A methods are in most cases variants of linear regression fits
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Slide from Gabi Hegerl’s presentation at Geneva IPCC WG1/WG2 Meeting on D&A, September 2009




D&A methodology (continued)

A regression analysis relates observed and modeled

fingerprints (signal characterizations from data and from
model output according to separate external forcings) and a
formal hypothesis testing on the coefficients of the individual
modeled fingerprints takes place to

A) Determine that the coefficients are significantly
different from zero (it is not all noise) and

B) Estimate the relative magnitude of the coefficients of
the anthropogenically forced/naturally forced
fingerprints.

QD



D&A methodology (continued)

A critical component in the regression analysis is the error
term, which needs to characterize the behavior of Y when left
alone (i.e., its internal variability). In most cases, and
definitely in the optimal approach to D&A, the error term is
not assumed to be the realization of a white noise process,
and control simulations are used to characterize its
covariance structure.



Sources of confidence/uncertainty

Greater confidence is achieved when

We can separate the contribution to observed changes from
individual sources “cleanly”

We can account for multiple sources of uncertainty
(observational and forcing and model uncertainties)

Models and observations agree on the amplitude of the
contributions

Other explanations can be shown to be not viable

The internal variability simulated by the model has similar
statistical characteristics to the observed

D



Global Average Surface Air Temperature
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Warming of global Surface Air Temperature
during past half century
(according to IPCC AR4)

e Cannot be explained without external forcing
Extremely likely (Model variability simulates well observed
and paleo variability; changes are very large compared to
simulated internal variability; upper ocean warming
contributes to support non-internal causes)

e |s not only due to known natural external causes
Very likely (No climate model can reproduce it applying only
natural externa forcings; happens at a time when natural
forcings would induce cooling)

e GHGs have been dominant force
Very likely (Multi-signal D&A analysis robustly estimates
larger contribution of GHGs compared to other forcings)

e GHGs would have caused more warming than observed

without volcanoes and anthropogenic aerosols
Likely (separation of the responses is uncertain across
models)



Non-optimal D&A

For some variables D&A has taken place only qualitatively, by
evaluating the consistency/coherence of the observed
changes with the changes modeled in the presence of
anthropogenic/all forcings, as opposed to the changes (or
their absence) modeled in the presence of natural-only

forcings.
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In its more rigorous form, however, non-optimal D&A is still a
regression approach

1) Use climate models to estimate “form” of signal
Usually the mean F of an ensemble of forced runs
Signal could be a pattern of change in space or in space & time, or across multiple variables
2) Estimate amplitude of signal in the observations
A scaled inner-product between a normalized signal and observations
S=(F*T)/||F|
3) Compare S with amplitude of signal in individual forced model runs
4) Compare S with natural variability of signal amplitude in control simulations
Calculate amplitude in similar length control run segments
Basis for a test of the strength of the signal in the observations
Note that model output is processed to match observations
It is masked to be “missing” where/when observations are missing, etc.

The fact that data are missing may have some impact ... we want to be sure we are not
detecting an “aliased” signal
5) Demonstrate that alternative signals are unlikely to be able to explain observed change

Note that in this type of analyses the regression assumes that the covariance
matrix is proportional to the identity matrix, therefore these approaches OD
amount to OLS



An example: Santer et al., 2007
D&A of SSTs in cyclogenesis regions

Pacific and Atlantic CR temperature time series are compared to modelled under no external
forcings (control simulations) or under 20t century forcings.

Trends are computed for different starting periods from two observationsal products and
compared to the distribution of trends obtained from control experiments of 22 different
models, finding that in most cases the observed trends are significantly larger than what
expected under no external forcings.

Estimates of externally forced components of trends are derived.

Single forcing experiments from one model are used to apportion the contributions of different
external forcings.



Modeled and observed SST changes in tropical cyclogenesis regions and observed changes
in stratospheric aerosol optical depth (SAOD).
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Comparison between observed and simulated SST changes in the ACR (A, C, E, and G) and
PCR (B, D,

F, and H).
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Estimates of the percentage contribution of external forcing to observed SST changes in the
ACR (A) and PCR (B).
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Contribution of different external forcings to SST changes in tropical cyclogenesis regions.
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Optimal approach to D&A

Floor to Francis!



