DADA: An Exploratory Workshop Buenos Aires, 15 October 2012

Data Assimilation:
An QOutlook

Michael Ghil

Ecole Normale Supérieure, Paris, and
: University of California, Los Angeles

LECOLE NORMALE SUPE‘RIEUREJ
[ ]

Joint work (recently) with

D. Kondrashov, M.D. Chekroun, & Y. Shprits, UCLA; A. Carrassi, IC3, Barcelona; C.-J. Sun,

CSIRO, Perth; A. Trevisan, ISAC-CNR, Bologna; A. Groth, ENS; P. Dumas & S. Hallegatte,
CIRED; L. Roques, INRA, Avignon; and many others: please see

http://www.atmos.ucla.edu/tcd/ and http://www.environnement.ens.fr/




Outline

» Data in meteorology, oceanography and space physics
- In situ & remotely sensed
» Basic ideas, data types, & issues
- how to combine data with models
- transfer of information
— between variables & regions
- filters & smoothers
- stability of the forecast-assimilation cycle
» Parameter estimation
- model parameters

» Novel areas of application

- DADA

» Concluding remarks and bibliography
- where we came from
- where we’re going



Main issues

The solid earth stays put to be observed,

Two types of information:
- direct — observations, and
- Indirect — dynamics (from past observations);
both have
Combine the two in (an) optimal way(s)
Advanced data assimilation methods provide such ways:
- sequential estimation — the Kalman filter(s),
particle filters, and

—

The two types of methods are essentially equivalent for simple
linear systems (the )




Main issues (continued)

- The two types of methods are essentially equivalent for
simple linear systems (the )

« Their performance differs for large nonlinear systems in:

- Study optimal combination(s), as well as improvements over
currently operational methods ( ).
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» Data in meteorology, oceanography and space physics
- In situ & remotely sensed
>



Atmospheric data

Drifting 12 0 3 semvery 2800
buoys: P, —

267

Cloud-drift: V
— 2x2259

Aircraft: V —
2x1100

Ship & land
surface: P, T, , 1 SRR e R
V, - 4x3446 |Esms 2 Ly L

C o =
Fig. 1 An example of the different observing systems in use during the
Global Weather Experiment,

Abbreviations used:

Aireps Standard wind observations from aircraft

Asdars, Alds High quelity wind observations from aircraft

Buoys Surface pressure observations from drifting buoys

Colba Constant level balloons

Props Radiosondes dropped from aircraft

Pilots Wind messurements from ascending balloons

Sutons Tempersture measurements from polar orbiting sateliites
Satwind Cloud drift wind measurements from geostationary satellites
Bhips Surface observations from ships

Bynops Surface observations from land r

Temps Temperature, humidity and wind wmessurements from redicsondes

Bengtsson, Ghil & Kallén (eds.):
Dynamic Meteorology,
Data Assimilation Methods (1981)

Polar orbiting
satellites: T —
5x2048

Balloons : V —
2x581x10

Radiosondes : T, V -
3x749x10

Total no. of observations = 0(10°)
scalars per 12h—24h

Nowadays 0(107) obs. & more d-o-f
of interest, too!




Observational network

Data locations and quality control decisions
obs198401 / 01-Jan-1984 182/ global / All upper-air geopotential height data / 500hPa

16)
[] QC history (8) |
Il QC excluded (0) |-

Quality control — preliminary & as part of the assimilation cycle




Ocean data — past
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Figure 4. —Time series of MBT casts.
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Total no. of
(oceanographic observations)/
(meteorological observations)
= O(10*) for the past; &
= O(107") for the future :
Syd Levitus (1982).




Ocean data — present & future

Altimetry = sea level; scatterometry = surface winds & sea state;
acoustic tomography = temperature & density; etc.

TOPEX/POSEIDON SEA LEVEL ABOVE 1993-96 MEAN, in MM. 10 DAY AVE STARTING 19990817 WOCE/PO-DAAC v1.1b

Courtesy of Tong (“Tony”) Lee, JPL




Space physics data

... and now

Space platforms in Earth’s magnetosphere
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» Basic ideas, data types, & issues
- how to combine data with models



Basic ideas of data assimilation
and sequential estimation - |

Simple illustration

We want to estimate
T — the temperature of this room, based on the readings
T, and T, of two thermometers,

by a linear estimate 7' = a7} + a1

The interpretation will be:
T, =T - first guess (of numerical forecast model)
T, = T° - observation (R/S, satellite, etc.)

A

T = T2 - objective analysis



Basic ideas of data assimilation
and sequential estimation - |l

If the observations T, and T, are unbiased, and we want 7 to be unbiased,
then o,+a, =1,

SO one can write
> updating (sequential).

1T = T1 - O@(TQ — Tl) ;
If T, and T, are uncorrelated, and have known standard deviations,
A1 = 01_2, A2 = 02_2,

then the minimum variance estimator() is

) A
I8 — T Ty —T1),
1 A1—|—A2(2 1)

and its accuracy is

n

(*) BLUE = Best Linear Unbiased Estimator



(Extended) Kalman Filter (EKF)

X' (tiy1) = M[x'(t;)] + (t;) y; = Hilx'(t;)] +¢;
QZ(SZ] = E(W?j ) R; 5Zj = Eleze )
d= yi — H;[x/(t;)] - innovation vector

Axho = xfao —
P/t = B[S ) x4
trP% = global error

Stage 1: Prediction (deterministic) > Stage 2: Update (Probabilistic)
s () = M_1[x9(t;_1)] xA(t;) = x/ (t;) + Ki(y? — Hi[x! (t;)
P/(t;) = M;_1P(t; - )ML_; + Q(t;—1) P(t;) = (I - K;H;P/(t;)
K; = P/(t; HI [H;P/ (1, HI + R,]™!
subject to O trP? =
M and H are the linearizations of M and H
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- transfer of information
— between variables & regions



Basic concepts: barotropic model

Shallow-water equations in 1-D, linearized about (U, 0, @), fU =— ®
U=20ms, f=10%s"1, ® =gH, H= 3 km.

y

u,+Uu +¢, —for=20
o,+ U, + fu=0
¢+ Up, + Qu, — fUr=10

PDE system discretized by finite differences, periodic B. C.
H,: observations at synoptic times, over land only.

- —~ —~— - o - . ~—

Pacific N. America Atlantic Eurasia

Ghil et al. (1981), Cohn & Dee (Ph.D. theses, 1982 & 1983), etc.




Conventional network

Expected RMS Error over Land

Relative weight of “0 o T
> 35 s o,
observational vs. g sof] 130
w 25 :q) 25
model errors g ld 120
£ stlg 15
o /V/IﬂﬂlLﬂ N/ v] /N Ad A /v thﬂJ
> .10 -k c4A? / (P IT 4% Uy v E
. P . V.
P.= QRIQ+ (1 - WA e Wi
o 1 ! 0
" Expected RMS Error over Ocean 20
(a) Q=0= Poo =0 > .35 [Fiy bl .38
= RN
g -30 I ‘VL.W-"'"VL'1.V\;1V1--%\;w‘tvt..-1.\; .
g .25 qﬂf{—lehg .25
. e ooo & .20 - Pl P o""tf E +1E vt Ea o .20
(b) Q=0 = (i), (ii) and (iii): g sl R e
> p1of % u, v, E
(i) “good” observations 377 08 FU by ey — U g e 08
4] 1 1 i 1 1 i | 1 1 0
R << Q - P R Expected RMS Error over Entire Domain
(%) =~ ’ 40 T T T T T T T T T .40
> 37 e 435
g 30 | j 4 .30
o .25 qrv.ut ey 4 .28
T E R S N R R
R>> Q= P,=Q/(1 —¥?); & 20 !gx,;lﬂg . LA 20
£ T RS s s
> .10} 4.1
. o " p— UV E
(iii) always (provided W= < 1) Y e
00 1 2 3 4 5 ; ; ; 9L 100

P, =min{R, Q/(1 —¥?)}.

Time {days)



{6h fcst} — {conventional (NoSat)}

Advection of
iInformation

Upper panel (NoSat):
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Lower panel (Sat):

Errors drastically reduceaq,
as info. now comes in,

off the ocean
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F16, 5 The rmsdifference between the & h forecast of the 30 mb geopotential height field and the analy-

sisforthe period 5-211 1979, Conto terval is 20m. a) Rms differeace betw the NOSAT analy-
(BU//. Amer. MeteorOl. SOC-, 1 982) \i: ::rd fc-f:.:l\l b) Rm:"::':'grcn:( h::l:clczlt,::tl:\gés[ J‘T\I:si-, :‘n‘\: :.;.t::a\‘lc Do, i3S
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» Basic ideas, data types, & issues

- filters & smoothers



The main products of estimation

- Filtering (F) — “video loops”
- Smoothing (-) — full-length feature “movies”
 Prediction (P) — NWP, ENSO

N. Wiener (1949, MIT Press)




Kalman smoother

Observation time index k
3 5

FLKS “KF
ag=4 { lag=3 & Jag=2 Qag=1

- Fixed-Lag Smoothing
Fixed-Point Smoothing

Filtering

For a fixed interval, weak
constrained 4-D Var is

equivalent to the sequential

(“Kalman”) smoother.
Cohn, Sivakumaran & Todling
(MWR, 1994)




Smoothing vs. Filtering: The Backward
Sequential Smoother (BSS)

« A“smoother” is smoother than a filter.

 But which smoother is - smoothest
- cheapest

- easiest to implement?

Ensemble Kalman Filter — EnKF )
Markov chain Monte Carlo — MCMC
Resampled Particle Filter — RPF

() to distinguish it from the
Extended Kalman Filter — EKF

T. M. Chin, M. J. Turmon, J. B. Jewell (JPL)
& M. Ghil (MWR, 2007)

/

—filter error
- - -smoother error

1 L 1 L 1 A I 1 1
10 15 20 25 30 35 40 45 50
time index




EnKF, RPF, MCMC and the BSS

The BSS retrospectively updates
a set of weights for ensemble

members. ;
P(data) a: ;iami lation
It can
- work with either EnKF- or RPF- l, H, ui l, l ,l, l,l l, l
generated ensembles; e O\ —— L4
- is relatively inexpensive; and samples ¢ OQ)D o O© G OO ) ©
. i at time t+1 - 7} P
- works well for highly nonlinear,
. . Ensemble Filter
illustrative examples:
- the double-well potential, & ConiE ( Sample trajectories X/”
Fhase : : 4
- the Lorenz (1963) model. L e e £
» time
r A
: Backward
< Smoothing weights Py ST
LN A

Ensemble Smoother



BSS Performance for the Lorenz (1963) System

Lorenz 63 ;. Resampled Particle Filter vs. Smoother
Data: x; and x;, every At=0.5 A f pm—— |

O observations
1ok filter
\/ = smoother

Upper panel: vs. smoother o o ® "

\
26 28 30 32 34 36 38 40

Smoother follows ob’ns (O) better
in x;, and is more realistic in x,.

T T T

- Particle Filter (RPF)
—%— Particle Smoother (RPF + BSS) | 4
—-- Ensemble Kalman Filter (EnKF)
—&— Smoothed EnKF (EnKF + BSS) | |

Lower panel: vs. EnKF,
& filter (- - -) vs. smoother (----) 4

Smoother better than filter, &
EnKF better than for very
small ensemble size N, but
takes over as Nincreases.

RMS estimation error

L 1 L Il 1
[¢} 50 100 150 200 250 300
Ensemble size (number of samples)
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» Basic ideas, data types, & issues

- stability of the forecast-assimilation cycle



Error components in forecast—analysis cycle

P/ 2 P' +AHAP" + g )

. . The relative contributions to
first-guess  analysis id. twins  modeling
error error error error error growth of
growth
analysis error

(P =e™ 21+ AAt)

g e+ e . <ot OO

ersistence " +, :
- 7 . "A+Q" (real model)
. -_— =




Assimilation of observations: Stability considerations

(sequential-discrete formulation):

Forecast state: :
7 a Correspo.ndmg f _ a
model integration from a Xn+1 = M(Xn ) perturbative (tangent 5XI’Z+1 - Méxn
linear) equation

previous analysis

(sequential-discrete formulation):

If observations are available and we assimilate them:

Evolutive equation of the a a 0
system, subject to forcing by X — [I —_— KH O]M(X ) + Ky
n

n+l n+1

the assimilated data

Corresponding perturbative (tangent linear) a a
equation, if the same observations are (SX = I - KH (SX

o . . . : n+1 n
assimilated in the perturbed trajectories as in

the control solution

O The matrix (I — KH) is expected, in general, to have a stabilizing effect (Ghil et al., 1981);

O The free-system instabilities, which dominate the error growth during the forecast step ,

can be reduced during the analysis step.
Carrassi, Ghil, Trevisan & Uboldi (CHAOS, 2008)




Stabilization of the forecast—assimilation system — |

- Periodic 40-variable Lorenz (1996) model;
- Assimilation algorithms: replacement (Trevisan & Uboldi, 2004), replacement + one adaptive obs’n
located by multiple replication (Lorenz, 1996), replacement + one adaptive obs’n located by BDAS

and assimilated by AUS (Trevisan & Uboldi, 2004).

!
SIMUAANoN Oy, N0 CEBANVEIONS ———

BDAS: Breeding on the Data .} standard cbsanations Gy~
standard cbsernvalons + MH largeted oboarvaban - e
Assimilation System 9 glandaed ODSSIVEDONS - AV 188050 ODESAVaNon
AUS: Assimilation in the

Unstable Subspace

cxponet [11S cays))

growe

Trevisan & Uboldi (J. Atmos. Sci., 2004)




Stabilization of the forecast—assimilation system — I/

Assimilation experiment with the Lyapunov vectors
40-variable Lorenz (1996) model
Spectrum of Lyapunov exponents:

Light blue: AUS with 1-hr updates

NO assimilation
AUS 3h

Carrassi, Ghil, Trevisan & Uboldi, _ et
(CHAOS, 2008)




Stabilization of the forecast—assimilation system — Il/

- 64-longitudinal x 32-latitudinal x 5 levels periodic channel QG-model (Rotunno & Bao, 1996)

- Perfect-model assumption

- Assimilation algorithms: 3-DVar (Morss, 2001); AUS (Uboldi et al., 2005; Carrassi et al., 2006)

Spectrum of Lyapunov exponents

—=— free
—— 3DVar-BDAS
—— AUS-BDAS

Leading exponent:
Amax = 0.31 days;
Doubling time = 2.2 days;
Number of positive exponents:
N+ = 24;
Kaplan-Yorke dimension = 65.02.

Leading exponent:
Amax = 0.002 days;
Kaplan-Yorke dimension = 1.1

Leading exponent:
Aay = — 0.52x1072 days™

max =~
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Parameter Estimation

dx/dt = M(x, u) + n(f)

y° = H(X) + &(1)

Simple (EKF) idea — augmented state vector
dw/dt=0, X=(xT, u")T

L(p)n = w(1), L — AR(MA) model, p = (p4, P2y ---- P)

Examples: 1) Dee et al. (IEEE, 1985) — estimate a few parameters in the
covariance matrix Q = E(n, n); also the bias <n> = En;

2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D);
Penland & Ghil (1993, MWR)

3) dx/dt = M(x, u) + n: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear
approach: Empirical mode reduction (EMR: Kravtsov et al., J. Clim., 2005;
Kondrashov et al., J. Clim., 2005, J. Atmos. Sci., 2006; Kravtsov et al., in Palmer &
Williams (Eds.), Cambridge U. P., 2010; Strounine et al., Physica D, 2010)




Parameter Estimation

dx/dt = M(x, u) + n(f)
y° = H(x) + (0

Simple (EKF) idea — augmented state vector
dw/dt=0, X=(xT, u")T




Sequential parameter estimation

” method — uncertain parameters are treated as
additional state variables.

e Example: one unknown parameter u

e The parameters are not directly observable, but the
drive parameter changes from innovations of the state:

_ f HT
) < (7

Pl HT

px L px

e Parameter estimation is always a even if the model is
in terms of the model state: use




Parameter estimation for coupled O-A system

Intermediate coupled model (ICM: Jin
& Neelin, JAS, 1993)

Estimate the
, along with the

by assimilating data
from a single meridional section.

The ICM model has errors in its initial
state, in the wind stress forcing & in

the parameters.

Hao & Ghil (1995, Proc. WMO Symp.
DA Tokyo); Ghil (1997, JMSJ); Sun
et al. (2002, MWR).

Kondrashov, Sun & Ghil (Monthly
Weather Rev., 2008)

b) 5F{eference solution
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. i
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Coupled O-A Model (ICM) vs. Observations

SSTA for westward—propagating regime:6S = 0.8, u=0.56

2005
2000
1995
1990
1985

130E 180 130W

SSTA for delayed—-oscillator regime:és =0,u=0.76

2005
2000
1995
1990

1985 :
L —

130E 180 130W

SSTA in NCAR-NCEP Reanalysis

————

130W
Longitude




Convergence of Parameter Values — |

a) Ocean-atmosphere coupling coefficient

Estimate | |
= = = True
Error

25

Estimate
= = =True
Error

15
Time (years)

|dentical-twin experiments




Convergence of Parameter Values

a) Central Pacific SSTA

T

1990 1995

b) lterative u estimate

1985 1990 1995

c) Iterative 6S estimate

1985 1990
Time (years)

Real SST anomaly (SSTA) data
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Evolution of DA - |

TABLE I. CHARACTERISTICS OF DATA ASSIMILATION SCHEMES IN OPERATIONAL USE AT THE

Organization
or country

Operational analysis
methods

END OF THE 1970s*
S——————

Analysis area

Analysis/forecast

Australia

F.R. Germany

Japan

Sweden

United Kingdom

USA.

USSR,

ECMWF?®

Successive correction
method (SCM)

Variational blending
techniques

Multivariate 3-D statistical
interpolation

SCM; wind-field and mass-
field balance through first
guess

Multivariate 3-D statistical
interpolation

SCM. Upper-air analyses

were built up, level by level,

from the surface

Variational height/wind
adjustment

SCM

Height-field analyses were
corrected by wind analyses

Univariate 3-D statistical
interpolation

Variational height/wind
adjustment

Hemispheric orthogonal
polynomial method

Univariate statistical
interpolation (repeated
insertion of data)

Spectral 3-D analysis

Multivariate 3-D statistical
interpolation

2-D* statistical
interpolation

Multivariate 3-D statistical
interpolation

SH¢
Regional
NH*
Regional
NH
Regional

NH

NH
Regional

NH

Regional

Global
Global
Global
NH

Gilobal

12 hr
6 hr

6 hr
(3 hr for the surface)
6 hr

12hr
(6 hr for the surface)

Climatology only as
preliminary fields
12 hr

“ After Gustafsson (1981):
b European Centre for Medium Range Weather Forecasts.
¢ 2-D is in a horizontal plane.
4 Southern Hemisphere and Northern Hemisphere, respectively.

Transition from “early” to
phase of DA in NWP:

— no Kalman filter (Ghil et al., 1981
()

- no (Lewis & Derber,
Tellus, 1985);

Le Dimet & Talagrand (Tellus,
1986)

(*) Bengtsson, Ghil & Kallén (Eds., 1981),
Dynamic Meteorology:

Data Assimilation Methods.
(Adv. Geophys.,




3D-Var

|
J = mma[(x“ -x)'B'x*-x")+(Hx -y)'R(Hx" -y)]
Distance to forecast Distance to observations

at the analysis time

1 4D-Var,

J = minE[(xo - xg)TB'l(xO - Xg) + E(HX,- - Y,-)TR,Tl(HX,- -Y.)]
i=1

Distance to background at the Distance to observations in a
initial time time window interval t,-t,

Control variable x(¢,) Analysis  x(z,) = M[x(z,)]

It seems like a simple change, but it is not! (e.g., adjoint)
What is B? It should be tuned...

Courtesy of E. Kalnay (2006)



Extended Kalman Filter (EKF) (Ghil 1980°s)

Forecast step:
x' =M EXG )
n—1

n n
Bn = MnAn—l n + Qn
Analysis step:
X = xz +K (y, - sz)
where the optimal weight matrix is given by
K =B (R+HB H')"
and the new analysis error covariance by

A =(I-KH)B

Still requires adjoint of model M and obs. operator H



Ensemble Kalman Filter (EnKF)

Forecast step°

n k ]\14 ( n— lk)
B = ﬁEbEbT where E’ = [ = X)X, = is]
Analysis step:

X = xi +K (y, - Hi:)
The new analysis error covariance in the ensemble space 1s (Hunt 2005)

A, =[(K -1)I+(HE)) R" (HE])]"

And the new ensemble perturbations are given by

1/2

E‘=E’ [(K— 1)An]



Evolution of DA - li

TABLE IV. DUALITY RELATIONSHIPS BETWEEN STOCHASTIC ESTIMATION AND DETERMINISTIC

CONTROL® C t 1 0 Ot ]

A. Continuous (linear) Kalman Filter a u I n a ry n e -
System Model WD) = FOW'(®) + GOb'(@), b ~ N[0,0()] 13 . v gy s
Measurement Model wo(t) = H{H)w'(®) + b°(t),  b°(1) ~ N[O, R(1)] P a nt h e I St I C VI eW Of DA :
State estimation W) = F()w(t) + K(x)T[w"(t) — H(t)w';z)], w0} = w}
Error covari P(t) = F()P(t) + POFT(t) + GO)Q(MG'(1) A A

pmpagati:r?ce —K@R@K(@), [ P(O)t= Py vari at [0]g! al = K F ,

(Riccati Equation) )
Kalman Gain K() = P@)HT(H)R™'(t)
Initial conditions E[w'(0)] = w}, E{[w'(0) — ws1[w'(0) — wil™} = PR, 3_ & 4_ D Var (~J 3 = & 4_ D P SAS
Assumptions R™}(1) exists

E{b'()[b°()]"} =0
Performance Index pé‘(t) = E{[Wr"}* w]lw" — w1} Or E n K F

B. Continuous (linear) Optimal Control

System M ') = F fi I i it’
I‘szz:s?:remoeiflModel ‘;"((tt)) =1‘;v((l[))“&)] :yge(z“ffgriables are measured) FaS h IO n a‘ b I e to CI al m It S a-I I th e Sa m e

Performi trol (0 = —K(w() it’ .
pwf,iﬁ;'ﬁﬁfﬁ;ﬁagmon ‘1‘"7(!:) = —FT[(¢YFl(t) — B)F) — O + PoH®R®) b Ut It S nOt .
(Riccati Equation) 5 5 o
Control Gain K@) = RTYH@®P@) . . .
Terminal conditions w(t) =0 G Od I S I n eve ryt h I n g y
P(t) = Q¢

Cost function Jw,u] = wipw, + J‘: WO 0w + T (OR@u(] dt b ut t h e i s i n t h e

C. Estimation-Control Duality

Estimation Control

to initial time t; final time ( A d V, G eO p hyS .

w(t) unobservable state variable of random w(t) observable state variable to be Y
controlled

wO(t) random observations u(t) deterministic control

Ft) dynamic matrix F7(¢) dynamic matrix

@(t) covariance matrix for the model errors 0(t) quadratic matrix defining acceptable
errors on model variables

H{1) effect of observations on state variables H(r) effect of control on state variables

P(t) covariance of estimation error under B(t) quadratic performance under

optimization optimization
K(ty weighting on observation for optimal K(t) weighting on state for optimal control

estimation

4 (A), Kalman filter as the optimal solution for the former problem; (B), optimal solution for
tlie latter problem; (C), equivalences between the two (after Kalman, 1960, and Gelb, 1974,
Section 9.5; courtesy of R. Todling).
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Computational advances

- more computing power (CPU throughput)
- larger & faster memory (3-tier)

- better numerical implementations of algorithms

- automatic adjoints

- block-banded, reduced-rank & other sparse-matrix algorithms
- better ensemble & particle filters

- efficient parallelization, ....

- Design integrated observing—forecast- systems!




Observing system design

> Need (independent) observations than to be tracked:

- “features” (Ide & Ghil, Dyn. Atmos. Oceans, 1997a, b);
- instabilities (Todling & Ghil, 1994 + Ghil & Todling, 1996, MWR);
- trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993).
» The cost of advanced DA is than that of instruments & platforms:
- at best use DA of instruments & platforms.
- at worst use DA to determine instruments & platforms
(advanced OSSE)
Use , if forward modeling is possible (observing operator H)
- satellite images, 4-D observations;
- pattern recognition in observations and in phase-space statistics.




Conclusions

can play a useful role in devising
better practical algorithms, and vice-versa.

- Judicious choices of observations and method can

* Trade-off between cost of observations
and of

« Assimilation of ocean data in the
is useful.

- They help estimate both parameters.

- Changes in estimated parameters compensate for




DA Research Testbhed (DART)

ARTICLES

ALPINE FORECASTS DEMONSTRATED

GULF STREANM FIELD STUDY

The Data Assimilation Research Testbed

THE DATA ASSIMILATION
RESEARCH TESTBED

A Community Facility

BY JEFFREY ANDERSON, TiM HOAR, KeviN RAEDER, Hul Liu, NANCY COLLINS,
RYAN TORN, AND AVELINO AVELLANO

DART, developed and maintained at the National Center for Atmospheric Research, provides

well-documented software tools for data assimilation education, research, and development.

model forecasts to estimate the state of a physi-

cal system. Developed in the 1960s (Daley
1991; Kalnay 2003) to provide initial conditions for
numerical weather prediction (NWP; Lynch 2006),
data assimilation can do much more than initialize
forecasts. Repeating the NWP process after the fact
using all available observations and state-of-the-
art data assimilation produces reanalyses, the best

D ata assimilation combines observations with
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The abstract for this article can be found In this Issue, following the
table of contents.
DOI:10.1175/2009BAMS2618.1

In final form 8 April 2009
22009 American Meteorological Soclety

available estimate of the atmospheric state (Kistler
et al. 2001; Uppala et al. 2005; Compo et al. 2006).
Data assimilation can estimate the value of existing
or hypothetical observations (Khare and Anderson
2006a; Zhang et al. 2004). Applications include
predicting efficient flight paths for planes that re-
lease dropsondes (Bishop et al. 2001) and assessing
the potential impact of a new satellite instrument
before it is built or launched (Mourre et al. 2006).
Data assimilation tools can also be used to evalu-
ate forecast models, identifying quantities that are
poorly predicted and comparing models to assess
relative strengths and weaknesses. Data assimilation
can guide model development by estimating values
for model parameters that are most consistent with
observations (Houtekamer et al. 1996; Aksoy et al.
2006). Assimilation is now used also for the ocean
(Keppene and Rienecker 2002; Zhang et al. 2005),
land surface (Reichle et al. 2002), cryosphere (Stark
et al. 2008), biosphere (Williams et al. 2004), and
chemical constituents (Constantinescu et al. 2007).
Assimilation tools under different names are used
in other areas of geophysics, engineering, economics,
and social sciences.

The Data Assimilation Research Testbed (DART)
is an open-source community facility that pro-
vides software tools for data assimilation research,

5 BANS
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The DA Maturity Index of a Field

few data, poor models

e The : Science is . don’t bother me with the facts!
e The observer/experimentalist: Don’t ruin my beautiful data with
your lousy

* Better data, so-so models.
o Stick it (the obs’ns) in — direct insertion, nudging.

 Advanced DA:

 Plenty of data, fine models.
« E(n)KF, 4-D Var (2" duality); UKF, particle filters, etc.

(Satellite) images — (weather) forecasts, climate “movies” ...




The main products of estimation")

Filtering (F) — “video loops”™

Smoothing (S) — full-length feature "movies”
Prediction (Pr) — NWP, ENSO

Parameter estimates (Pe) — all of the above + DADA

S F P Distribute all of this over the Web to
i scientists, and the
“person in the street”

© © ©O © . .
/W (or on the information

superhighway).

In a general way: Have fun!!!

OF + S + P: N. Wiener (1949, MIT Press); Pe — a lot recently



Concluding remarks

We’'ve come a long way in 30 years — some advances are laborious and
incremental (e.g., sequential vs. control-theoretical methods), but others
are fresh and exciting.

The latter include new areas of application
— biology, geomagnetism, paleoclimate, space physics, ..., DADA,
as well as novel methodological challenges
— multi-scale and multi-model problems
— inverse problems for evolution equations,
Including climate simulation & sensitivity studies,
& uncertainty quantification

Technological advances both pose new problems (massive data sets, higher
resolution, ...) and help solve them.

Overall, it’s a brave new world, in which data and models actively speak to each
other, and we do so to both: enjoy!



THE COMPLETE CARTOONS OF THE NEW YORKER

st

“Miss Peterson, may I go home? I can’t assimilate
any more data today.”

Rerurn 1o Main Menu »
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Overall Conclusion

®* No observing system without and no assimilation
without a

* Quote of the day: “You cannot step into the same river® twice¢”
(Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.)

a of state and errors

BMeandros

¢ “You cannot do so even once” (subsequent development
of “flux” theory by Plato, cca. 400 B.C.)




Parameter Estimation for Space Physics — |

Daily fluxes of relativistic (1 MeV) electrons in Earth’s outer radiation belt
(CRRES observations starting on August 28, 1990)

K, - index of geomagnetic activity (external forcing)

a) CRRES Observations

b)Kp index of geomagnetic activity

Joint work with
D. Kondrashov, Y. Shprits,
& R. Thorne, UCLA;

| . R. Friedel & G. Reeves,
240 260 280 LANL
Days of year, 1990




Estimating noise — |

- 0°0l AVQ

Q1 =QS/OW’ 02=Ofast1 03 =0; o> | R

R1 = 0, R, = 0, RS :R; ALPHA (1)
Q=3 aQ; R=5 aR;
a(0) = (6.0, 4.0, 4.5)T;
Q(0) = 25*I.

true (o =1)

- ALPHA L)

Dee et al. (1985, IEEE Trans. Autom.
Control, AC-30)

_L-O 0l AYQ

ALPHA (3) |

Poor convergence for Q?




Estimating noise — I

Same choice of a(0), Q;,
and 7 but . e

1 0.8 0]
081 0 |

) ALPHA (2} ’
| O O 1 J true (Q, = 1) , """";-".""".;."J'Jl'.';'.'L'.‘-‘-”-‘ii'-'."-:'-':‘.'-'i.‘-".':.".‘..".'."-.".‘.‘.':;;'.':-;-.-;;-;,-;-,-;-_: K

Dee et al. (1985, IEEE Trans. Autom.
Control, AC-30)

ALPHA (3)

Good convergence for Q!




EKF results with and w/o parameter estimation

a) SSTA from EKF with uw and 68 estimation

180 130w

b) SSTA from EKF with fixed M=0.76,68=O

L —
— —

=-——————

180 130WwW 80w

c) SSTA from model forced with estimated u(t),és(t)

180 130w
Longitude




Parameter estimation for space physics — lli

Daily observations from the “truth” —
are used to correct the model’s

parameters, €T = 10 and t,, = 10.
The estimated error tr(P;) —> actual.
When the parameters’

is large enough, their EKF estimates
converge rapidly to the “truth.”

RMS error from the truth

—KF
— EKF/Parameter
— Estimated

40 60 ' 40 60 80
Time (days) Time (days)




Parameter estimation for space physics — IV

a) Estimated lifetimes

= = =efrror
— =3

c) Estimated fluxes

m T v hTiR . - |- -
240 260 280 300
Days of Year, 1990

“ - "

- Daily observations from the CRRES are used to estimate parameters € and .

- Losses and sources are different for CIR-driven (September 11, 1990; DOY 260-280) and
CME-driven (October 9, 1990; DOY 285-300) storms.






