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Pierre Simon Laplace’s view on D&A

“If an event can be produced
by a number of n different
causes, then the probabilities
of the causes given the event
... are equal to the probability
of the event given that cause,
divided by the sum of all the
probabilities of the event
given each of the causes.”

(1749-1827)
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Pierre Simon Laplace (1749-1827)

“If an event can be produced
by a number of n different
causes, then the probabilities
of the causes given the event
... are equal to the probability
of the event given that cause,
divided by the sum of all the
probabilities of the event
given each of the causes.”

P(causei |event) =

P(event|causei )× P(causei )Pn
j=1 P(event|causej )× P(causej )
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Leaving the Deutschmark for the Euro
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Why was it hard to leave the Deutschmark ?

The assumption of normality is very prevalent in the theoretical and
applied statistical research

Asymptotic justification : Central Limit Theorem

Nice properties of Gaussian vectors

Completely characterized by its first two moments

Stability under linearity

Stability under summation

Stability under conditioning
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Bayesian Kalman filter (Meinhold and Singpurwalla, 1983)

Observation equation

Yt = FX t + Vt with Vt ∼ N [0,V ]

State equation

X t = GX t−1 + Wt with Wt ∼ N [0,W ]

Conditional distribution of X t given Y1:t

If we assume ˆ
X t−1|Y1:(t−1)

˜
∼ N

h
X̂t−1,Σt−1

i
then

[X t |Y1:t ] ∼ N
h
X̂t ,Σt

i
with

X̂t = GX̂t−1 + RtF T (V + FRtF )−1et and Σt = Rt − RtF T (V + FRtF )−1FRt

where Rt = GΣt−1GT + W and et = Yt − FGX̂t−1.
1

1. Brockwell and Davis, 2002 (chap 8) and 1991 (chap 12), Meinhold and Singpurwalla, (1983)
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Three examples

Smoothing
Tree-rings

Elliptical 
Kalman filtering

Filtering
daily max
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Daily maxima of methane and nitrous oxide at LSCE

Joint work with Gwladys Toulemonde and Armelle Guillou



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

 

C
H
4

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2003 2004 2005 2006 2007

 

N
2
O

3
1
5

3
2
0

3
2
5

3
3
0

2003 2004 2005 2006 2007

Figure 1: Daily maxima of CH4 and N2O during the period 2002-2007. Measurements in
parts per billion by volume (ppbv) were made at LSCE, a laboratory located at Gif-sur-
Yvette, a city south west of Paris, France. Data are missing during a few time lags and
daily maxima are computed over a block size of 24 hours.

gas with tremendous global warming potential (about 300 times more capability to trap

heat in the atmosphere than carbon dioxide). Methane is also an important greenhouse

gas with a global warming potential of 25 compared to carbon dioxide. In this context,

the monitoring of daily maxima of CH4 and N2O over long time periods appears to be

paramount, e.g. for health reasons. As the recording of the CH4 and N2O appear to be

intermittent, one may wonder if daily maxima concentrations of nitrous oxide could be

inferred (reconstructed) from the methane’s observations (the dual question can also be

asked). This inquiry can be explored if these two random variables are dependent. The

scatterplot shown in Figure 2 clearly indicates a real but complex relationship between the

two concentrations. The cloud shape in Figure 2 can be, in part, explained by the distri-

3
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Figure 2: Scatterplot between daily maxima concentrations of CH4 (x-axis) and N2O
(y-axis), see Figure 1.

butional nature of the random variables at hand. Coming back to Figure 1, the marginal

distributions of those two atmospheric concentrations do not appear to be symmetrical

around a mean value. Large concentrations tend to be more disperse than smaller ones.

This is a clear indication that a symmetrical distribution like a Gaussian one will not

provide a reasonable fit, especially for the upper tail behavior of these two greenhouse

gases. This discrepancy with the Gaussian paradigm is typical of random variables that

are defined as daily maxima.

Since the seminal work of Fisher and Tippett (1928), Extreme Value Theory (EVT) (e.g.,

Embrechts et al., 1997; Coles, 2001; Beirlant et al., 2004; de Haan and Ferreira, 2006) has

been specially developed to model distributions of maxima. Under suitable assumptions,

correctly normalized maxima should follow a generalized extreme value distribution which

merges three different tail behaviors: light (Gumbel type), heavy (Fréchet type) and

bounded (Weibull type). Concerning daily maxima concentrations of CH4 and N2O, our

4
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Gumbel

CDF
F (x) = exp(− exp(−(x − µ)/σ)) for all real x .
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previous work (Toulemonde et al., 2010) pointed out that a Gumbel distribution offers

a reasonable fit for such data. The Gumbel cumulative distribution function (c.d.f.) is

given by

Hµ,σ(x) = exp

�
− exp

�
−x− µ

σ

��
, with −∞ < x < +∞, (1)

where µ and σ correspond to the so-called location and scale parameters, respectively.

As a visual check, the quantile-quantile (QQ) plot displayed in the left panel of Figure 3

compares the ranked observed CH4 maxima (x-axis) with their expected values obtained

from a fitted Gumbel model (y-axis). The inference was made by implementing the

method-of-moment technique studied in Proposition 4 in Toulemonde et al. (2010) in

a temporal dependence context. The diagonal line indicates a perfect fit. Overall, the

assumption that both daily CH4 and N2O maxima are marginally Gumbel distributed

appears to be reasonable. Consequently, this Gumbel hypothesis for the margins will be

Daily maxima of CH4 Daily maxima of N2O
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Figure 3: QQ-plots of daily maxima of CH4 and N2O obtained after fitting a Gumbel
distribution via a method-of-moment technique proposed in Toulemonde et al. (2010). In
(1), daily maxima of methane have estimates with 95% confidence intervals: σ̂ = 79.8 ∈
[73.3; 86.4], µ̂ = 1915.9 ∈ [1904.4; 1927.4], and, for nitrous oxide, σ̂ = 1.52 ∈ [1.39; 1.64],
µ̂ = 320.0 ∈ [319.7; 320.2]. The x-axis and y-axis represent the observed and expected
ranked values.
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assumed throughout this paper. Concerning the temporal dependence, the scatterplot of

consecutive maxima of CH4 from day t (x-axis) to day t + 1 (y-axis) shown in the left

panel of Figure 4 indicates a short term dependence. The same can be said from N2O

maxima, see the right panel of Figure 4.
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Figure 4: Scatter plots of consecutive maxima of CH4 and N2O. The x-axis corresponds
to day t and the y-axis to day t + 1. The empirical estimate of the lag 1 autocorrelation
is equal to 0.55 for the CH4 and to 0.52 for the N2O.

The inference of such dependencies between bivariate maxima can be undertaken via dif-

ferent methods. For example, one could follow a copula approach (Joe, 1997) or estimate

a bivariate extremal dependence function (e.g., Naveau et al., 2009). Here, we opt for

another modeling road because our goal is to infer unobserved daily maxima of N2O from

measured daily maxima of methane. In addition, we would like to reproduce the temporal

structure plotted in the left panel of Figure 4. The classical state space models formalism

(e.g., Cappé et al., 2005) represents an appealing solution to address these issues. The

main difficulty here resides in ensuring that the marginals of daily maxima, see Figure 3,

follow a Gumbel distribution within a state space modeling structure.

6
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The problems at hand

The Scientific Problem Under Study

How to reconstruct missing maxima from one of each time series ?

The statistical Problem Under Study

How to make on-line forecasts with Gumbel distributed random
variables ?
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Introduction
Linear autoregressive Gumbel process

Undirectly observed Gumbel process : State-space models

Use of α-stable variables

A key linear relationship

Gumbel(µ1 + µ2, σ/α) = µ2 + σ log S + Gumbel(µ1, σ)

where Gumbel(µ1, σ) denotes a Gumbel r.v. which is independent of S that is a
positive α-stable r.v. (α ∈ (0, 1]) with Laplace transform

E(exp(−uS)) = exp(−uα), for all u > 0.

• A random variable S is said to be (α)-stable if and only if for all k > 1 there

exist ck > 0 and dk such that S1 + . . . + Sk
d
= ckS + dk where S1, S2... are iid

copies of S.

• Examples and special cases where one can write down explicit expressions for
the density : Gaussian, Cauchy, Levy distributions.

Gwladys Toulemonde State-space models for maxima
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Another state-space Gumbel maxima model

In terms of notations, it is convenient to call the random variable µ + σ log Sα where Sα

is defined by (2) an Exponential-Stable variable with parameters α ∈ (0, 1), µ, σ > 0,

denoted by ExpS(α, µ, σ). This allows us to write down our state space model.

PROPOSED MODEL: Let {Zt, t ∈ Z} and {Yt, t ∈ Z} be two stochastic processes

defined as follows





Yt=νt + HtZt + ηt,α2 (observational equation)

Zt=α1Zt−1 + εt,α1 (state equation)
(3)

where Ht > 0, α1 ∈ (0, 1), α2 ∈ (0, 1) and the sequences {εt,α1}t and {ηt,α2}t correspond

to two independent samples of Exponential-Stable variable, ExpS (α1,−σγ(1− α1), α1σ)

and ExpS (α2,−Htσγ(1/α2 − 1), Htσ), respectively. The variable εt,α1 is independent of

{Zt�}t�≤t−1 and the variable ηt,α2 is independent of {Zt�}t�≤t. The scalar γ is the Euler’s

constant.

The state equation in (3) has a unique strictly stationnary solution which we will consider

and where Zt is Gumbel distributed. The observational equation corresponds to adding

an Exponential-Stable noise to the Gumbel distributed variable Zt. This ensures that

the margins of Yt are also Gumbel distributed. More precisely, the variables Zt and Yt

are Gumbel distributed with parameters (−γσ, σ) and (νt− Htγσ
α2

, Ht
σ
α2

), respectively (see

Appendix for details). Having a linear model makes the computation of covariances and

correlation between {Zt} and {Yt} simple and we obtain

Cov(Zt, Zt−h) = α
|h|
1 Var(Zt), (4)

Cov(Yt, Zt) = HtVar(Zt), (5)

Cor(Yt, Zt) = α2. (6)

9
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Properties

Margins
the variables Zt and Yt are Gumbel distributed with parameters (−γσ, σ) and
(νt − Htγσ

α2
,Ht

σ
α2

)

Covariances

Cov(Zt ,Zt−h) = α
|h|
1 Var(Zt ),

Cov(Yt ,Zt ) = HtVar(Zt ),

Cor(Yt ,Zt ) = α2



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

Filtering
Introduction

Linear autoregressive Gumbel process
Undirectly observed Gumbel process : State-space models

Recursive system

Yk

↓

p(Zk−1|Y1:k−1)
prediction−→

p(Zk|Zk−1)
p(Zk|Y1:k−1)

correction−→
p(Yk|Zk)

p(Zk|Y1:k)

Prediction and filtering densities

p(Zk|Y1:k−1) =

�
p(Zk|Zk−1)p(Zk−1|Y1:k−1)dZk−1 (Prediction step)

p(Zk|Y1:k) =
p(Yk|Zk)p(Zk|Y1:k−1)�

p(Yk|Zk)p(Zk|Y1:k−1)dZk
(Correction step)

Gwladys Toulemonde State-space models for maxima
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Particle filtering
Introduction

Linear autoregressive Gumbel process
Undirectly observed Gumbel process : State-space models

Auxiliary Importance Sampling

Auxiliary particle filter (APF)

At time t = t0

ξ1:N
t0

iid∼ p(Xt0)
w1:N

t0 ← 1
N

At time t0 < k ≤ T ,

1) Selection step
βi

k ← wi
k−1�p(Yk|ξi

k−1)
j1:N ← resample(β1:N

k , 1 : N)

2) Propagation

ξi
k ∼ p(Xk|ξji

k−1) for i = 1, ..., N

3) Computation of the weights for i = 1, ..., N

wi
k ← p(Yk|ξi

k)

�p(Yk|ξji

k−1)

wi
k ← wi

k�N
i=1 wi

k

Gwladys Toulemonde State-space models for maxima
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Particle filtering, a few references (source Olivier Cappé)

Conclusions

Some General References on SMC

Doucet, A., De Freitas, N. and Gordon, N. (eds.) (2001) Sequential
Monte Carlo Methods in Practice. Springer.

Ristic, B., Arulampalam, M. and Gordon, A. (2004) Beyond Kalman
Filters: Particle Filters for Target Tracking. Artech House.

Cappé, 0., Moulines, E. and Rydén, T. (2005) Inference in Hidden
Markov Models. Springer.

Doucet, A., Godsill, S. and Andrieu, C. (2000) On sequential Monte-Carlo
sampling methods for Bayesian filtering. Stat. Comput., 10, 197-208.

Arulampalam, M., Maskell, S., Gordon, N. and Clapp, T. (2002) A
tutorial on particle filters for on line non-linear/non-Gaussian Bayesian
tracking. IEEE Trans. Signal Process., 50, 241–254.

Cappé, O., Godsill, S. J. and Moulines, E. (2007) An overview of existing
methods and recent advances in sequential Monte Carlo, IEEE Proc., 95,
899–924.
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Particle Filtering

Weight particles for our Gumbel model (reducing the computational
cost)

p(yt |ξi
t−1) =

1
Htσ

fUt,α1,α2

„
yt − C

Htσ

«
where

Ut,α1,α2 = α1 log St,α1 + log St,α2

and
C = νt − Htγσ

α2
+ Htα1γσ + Htα1ξ

i
t−1
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Comparing MSE for different methods

KF BF500 APF-PS500 APF-Opt500

α1 = 0.1 and α2 = 0.4 1.354 1.317 1.317 1.314
α1 = 0.1 and α2 = 0.6 1.036 1.017 1.096 1.013

α1 = 0.5 and α2 = 0.4 1.336 1.296 1.233 1.222
α1 = 0.5 and α2 = 0.6 0.994 0.959 0.905 0.841

α1 = 0.9 and α2 = 0.4 0.984 0.873 0.764 0.764
α1 = 0.9 and α2 = 0.6 0.665 0.569 0.434 0.434

Table 1: Mean of the MSEs based on 100 replica.

25
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Missing two weeks out of three months

MSEs for return levels based on 100 replica for α1 = 0.5 and α2 = 0.6
with 500 particles.

Return period Incomplete data APF-PSN APF-OptN Whole data
1 year (5.9) 0.77 0.65 0.62 0.61
5 year (7.5) 1.16 0.99 0.95 0.92

10 year (8.2) 1.35 1.16 1.11 1.08
50 year (9.8) 1.84 1.61 1.54 1.48
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Conclusions about Gumbel state-space model

Estimating hidden Gumbel distributed maxima is possible by using
particle filtering techniques

Optimizing the weights improves the MSE

Very much tailored to Gumbel distributed maxima
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Three examples

Filtering
daily max

Smoothing
Tree-rings

Elliptical 
Kalman filtering
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Elliptical distributions, GP tailed and Kalman filtering

Joint work with Anne Sabourin
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Elliptical distributions

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

A wide class, allowing for bounded or heavy tailed laws.

Definition

A random vector : X ∈ Rn with density f is elliptical with

Parameters : µ ∈ Rn, Σ ∈Mn×n(R) a positive definite
symmetric matrix

Density generator g such that
� +∞
0 tn/2−1g(t)dt <∞,

iff

f (x) = cn|Σ|−1/2g((x − µ)�Σ−1(x − µ)),

cn =
Γ(n/2)

πn/2
� +∞
0 tn/2−1g(t)dt

Gaussian vectors : a specific case of elliptical vectors with
generator g(s) = exp(− s

2) (see e.g [5] or [7] )

Anne Sabourin Elliptical Kalman Filter
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Elliptical distributions

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Stochastic representation

Any elliptical vector can be written as :

X = µ + RA�U

where

U ∈ Rn is uniformly distributed on the unit sphere

A ∈Mn×n(R) is such that A�A = Σ

R (called the radial variable) is a positive real random
variable, independent from U and with density

h(r) =
2�

tn/2−1g(t)dt
rn−1g(r2)I[0,∞[(r)

An easy way to simulate elliptical distributions. see e.g [5] or [7]

Anne Sabourin Elliptical Kalman Filter
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Notations for conditioning

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Stability properties
under marginalization and conditioning

Crucial for filtering data !

Let X =

�
X1

X2

�
, X1 ∈ Rp, X2 ∈ Rn−p

Corresponding blocks for µ and Σ

µ =

�
µ1

µ2

�
, Σ =

�
Σ11 Σ12

Σ21 Σ22

�

see [5]

Anne Sabourin Elliptical Kalman Filter
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Margins, still elliptical

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Stability : Margins

X1 ∼ Ep(µ1, Σ11, g(1))

with

g(1)(s) =

� +∞

0
w

n−p
2
−1g(s + w)dw

Anne Sabourin Elliptical Kalman Filter
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Conditioning, still elliptical

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Stability : Conditional laws

X2| (X1 = x1) ∼ En−p(µ2|1, Σ2|1, g2|1)

with :

µ2|1 = µ2 + Σ21Σ
−1
11 (X1 − µ1)

Σ2|1 = Σ22 − Σ21Σ
−1
11 Σ12

g2|1(s) = g(q1 + s), q1 = (X1 − µ1)
�Σ−1

11 (X1 − µ1)

Same equations as for conditionals from Gaussian laws !

Anne Sabourin Elliptical Kalman Filter
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Thresholding : the Generalized Pareto Distribution (GPD)

P{Y−u > y |Y > u} =

„
1 +

ξ y
σu

«−1/ξ

+

Vilfredo Pareto : 1848-1923

Born in France and trained as an
engineer in Italy, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or ”Pareto’s Law”), as
a model for how income or wealth
is distributed across society.



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

GPD : “From Bounded to Heavy tails”
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Elliptical Generator = the Generalized Pareto Tail

gσ,ξ(s) = P{Y > s} =

„
1 +

ξ s
σ

«−1/ξ

+
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Elliptical distributions and Pareto generator

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Stability of the GPD class

Fundamental property

gσ,ξ(s + u) = gσ+ξu(s)gσ(u)

A key to obtain explicit expressions for conditional and margins

Anne Sabourin Elliptical Kalman Filter
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Pareto versus exponential generators

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Definition
Properties
Choice of a generator

Example : Heavy tailed laws

Gaussian (grey) versus heavy tailed GPD elliptic (red),
ξ = 940.009756, σ = 0.09756

−4 −2 0 2 4 6

−4
−2

0
2

4
6

GPD generators with ξ > 0 allow greater deviations from mean.

Anne Sabourin Elliptical Kalman Filter



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

AR(1) X t = FX t−1 + εt

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

Innovations with GPD global generator

Choose gM(s) = gσ,ξ(s) as a global generator for M.
Upper bound for ξ : ξsup = 2

n(T+1)

Lemma

Elliptical innovations �t = (Xt − FXt−1|xt−1) have GPD generator
with parameters :

σ̃ =
σ + ξqt−1 (xt−1)

1− αξ
, ξ̃ =

ξ

1− αξ

Note : qt−1 (xt−1) is as in (5)

Upper bound for ξ̃ : ξ̃sup = 1
n

Anne Sabourin Elliptical Kalman Filter
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AR(1) X t = FX t−1 + εt

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

Simulation : explicit expression for radial cdf’s and their
inverse

for ξ > 0

Ht(R) = pbeta
( n

2
, 1
ξ
− n(T−1)

2
− n

2
)

�
ξR2

σ + ξ(qt−1(xt−1) + R2)

�

H−1
t (u) =

�
(
σ

ξ
+ qt−1(xt−1))

wX
t (u)

1− wX
t (u)

where
wX

t (u) = pbeta−1

( n
2
, 1
ξ
− n(T−1)

2
− n

2
)
(u)

Anne Sabourin Elliptical Kalman Filter
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AR(1) X t = FX t−1 + εt

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

Ex : Elliptical (GPD generator) versus Gaussian

0 20 40 60 80 100

−8
0

−4
0

0
20

40

Index

Elliptical and Gaussian AR(1) model

elliptical
gaussian

xi = 0.0187  ; sigma= 0.1869 max eigen value for noise = 4

for F = 0.25

GPD generator (ξ = 0.0187, σ = 0.1869) allows greater deviations.
Anne Sabourin Elliptical Kalman Filter
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Kalman filters and elliptical distributions

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

Global elliptical state space model

Corresponding formulation of observation and state equations (8)
in term of global model, with Xt ∈ Rp, Yt ∈ Rn−p.

cf AR1 model

block matrices in ΣW

ΣXt = Σ� + FΣXt−1F
�

ΣXt ,Xt−k
= F kΣXt−k

ΣYt ,Xt−k
= GF kΣXt−k

ΣYt = GΣXtG
� + Σν

ΣYt ,Yt−k
= GF kΣ�

Xt−k

implies non correlated noises
Anne Sabourin Elliptical Kalman Filter
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Kalman filters and elliptical distributions

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

Global elliptical state space model cont’d

Generators

gν
t (s) =

� +∞

0
w

nT+p−n
2

−1gW (s + w + qt(xt)) (9)

g �
t (s) =

� +∞

0
w

nT−p
2

−1gW (s + w + qt−1(xt−1)) (10)

with qt(xt) = x �t(ΣXt )
−1xt

Again, implicit expression for gW !

Anne Sabourin Elliptical Kalman Filter
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Kalman filters : bringing the GPD

Introduction
Elliptical distributions

Auto-Regressive and hidden state space models
Conclusion : with real observations ?

References
Some more about the Copula model

Global elliptical AR1 model
State space models : Gaussian vs elliptical cases
Conditional laws with respect to y1:t
Results

GPD global generator

Choose gW (s) = gσ,ξ(s) as a global generator for W .
Upper bound for ξ : ξsup = 2

nT+p

Lemma

Elliptical innovations �t = (Xt − FXt−1|xt−1) and
νt = (Yt − GXt |xt) have GPD generator with parameters :

σ� = σ+ξqt−1(xt−1)
1−α�ξ ξ� = ξ

1−α�ξ

σν = σ+ξqt(xt)
1−ανξ ξν = ξ

1−ανξ

with α� = nT−p
2 , αν = nT+p−n

2

Anne Sabourin Elliptical Kalman Filter
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Simulations

ξ > 0,

0 10 20 30 40 50

50
15

0
30

0

time

Elliptical  statespace model, GP generator, gaussian and GP estimates
amplitudes

observed hidden

0 10 20 30 40 50

−5
00

0
50

0

time

hidden GP estimate Gaussian estimate GP confidence region Gaussian confidence region

coordinate n° 1

0 10 20 30 40 50

−4
00

0
40

0

time

coordinate n° 2

joint xi= 0.0079  ; sigma= 1 ; univariate xi= 0.66
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max eigen value for hidden vector’s noise = 13.325
for observable vector’s noise = 15.136

ξ > 0

0 10 20 30 40 50

10
40

70

time

Elliptical  statespace model, GP generator, gaussian and GP estimates
amplitudes

observed hidden

0 10 20 30 40 50

−4
00

20
0

80
0

time

hidden GP estimate Gaussian estimate GP confidence region Gaussian confidence region

coordinate n° 1

0 10 20 30 40 50

−4
00

0

time

coordinate n° 2

joint xi= 0.0079  ; sigma= 1 ; univariate xi= 0.66
0.95 % confidence regions; radial quantile = 0.4

max eigen value for hidden vector’s noise = 13.325
for observable vector’s noise = 15.136

ξ
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Simulations

ξ < 0
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0.
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Elliptical  statespace model, GP generator, gaussian and GP estimates
amplitudes

observed hidden
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joint xi= −5  ; sigma= 1 ; univariate xi= −0.008
0.95 % confidence regions; radial quantile = 0.95

max eigen value for hidden vector’s noise = 13.325
for observable vector’s noise = 15.136

ξ
ξ < ξsup = 1

nT+p
2 +1

X i
t Y j

t

σ̃ = σ
1−αξ ξ̃ = ξ

1−αξ α = nT+p−1
2 ξ̃

ξ̃sup =
ξsup

1− αξsup
=

1
(nT+p

2 + 1)− (nT+p−1
2 )

=
2
3

ξ
∣∣∣ξ̃

∣∣∣ = −ξ
1−αξ ξ

ξ̃

sup
ξ<0

∣∣∣ξ̃
∣∣∣ = lim

ξ→−∞

( −ξ

1− αξ

)

=
1
α

=
nT + p− 1
nT + p− 1

0 T

T = 100, n = 5, p = 2

X̂ i
t

ξ
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Conclusions about Elliptical KF

Elliptical distributions with GPD generators provide explicit KF equations

It can handle bounded, Gaussian and heavy tails

Restricted to finite times series

Looking for applications with symmetrical distributions

ξ > 0 x > 0 u = ξw2

σΣ y = u
1+u

F (x) = K

ˆ x

−∞
(1 +

ξw2

σΣ
)−

1
ξ dw

=
1
2

+ K1

ˆ

ξx2

σΣ

0

u−
1
2 (1 + u)−

1
ξ du

=
1
2

+ K2

ˆ

ξx2

σΣ+ξx2

0

y−
1
2 (1− y)

1
ξ + 1

2−2du

=
1
2

{
1 + 1

2 , 1
ξ− 1

2

(
ξx2

σΣ + ξx2

)}

ξ < 0 0 < x <
√

σΣ
−ξ

F (x) = K

ˆ x

−
√

σΣ
−ξ

(1 +
ξw2

σΣ
)−

1
ξ dw

=
1
2

+ K1

ˆ

−ξx2

σΣ

0

u−
1
2 (1− u)−

1
ξ du

=
1
2

{
1 + 1

2 ,− 1
ξ +1

(−ξx2

σΣ

)}
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Three examples

Filtering
daily max

Elliptical 
Kalman filtering

Smoothing
Tree-rings



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

Dendro : an attempt to leave the linear world ?
Inverse problem: Paleoclimatic reconstructions

Ground
Temperature

Tree-Ring
patterns

Forward 
Model

+
Inversion

Procedure 
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Seventeen Pinus halepensis Mill tree ring width logarithms from the “Rognac” site
(1867− 1993)

year
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The problems at hand

The Scientific Problem Under Study

How to extract a common signal among 17 tree ring widths ?

The statistical Problem Under Study

How to calculate the posterior distribution of a common signal ?
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Similar BHM approaches

Hooten and Wikle, 2007
a BHM for the spatio-temporal growth dynamics of shortleaf pine but with
chronology indices. They linked these chronologies with drought information
like the Palmer Drought Severity Index.

Haslett, 2005
investigated the problem of reconstructing prehistoric climates from lake
sediment cores.
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The “linear aggregate model” (Cook 1990, Buckley 2009)

A log-additive model

log(ring width) = F t + Gt + Dt + unexplained variability

where

t =year

Gt the age-related trend due to normal physiological aging processes

F t to the climatically-related environmental signal

Dt (= 0) to disturbance factors, either within the forest stand or outside of
it (e.g., insect outbreaks or fires).
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Simulations : finding f and gj from the yj ’s (low panel)
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Our main assumptions

log(ring width) = F t + Gt + 0 + unexplained variability

Notations

yj = (yj (t1), ..., yj (tn))T = log(ring width) produced by tree j

f = (f (t1), . . . , f (tn))T = the hidden common signal,

gj = (gj (t1), . . . , gj (tn))T = individual age effect for tree j

unexplained variability = a zero mean Gaussian vector with covariance
σ2In
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Hierarchical Bayesian Model with three layers

[process, parameters|data] ∝ [data|process, parameters]

×[process|parameters]

×[parameters]
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Hierarchical Bayesian layers

Important statistical modeling questions
A) Data layer := [data|process, parameters]=

yj |gj , f, σ2 ∼ gj + f + σ2Nn(0n, In)

B) Process layer := [process|parameters] =??
C) Parameters layer (priors) := [parameters] =??
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[process|parameters] = smoothing splines

Splines and BHM, Kimeldorf and Wahba (1970) and Wahba (1978)
y = f + σ2N (0, I) with improper Gaussian prior for the trend f

f|τ 2 ∼ Nn(0, τ 2K−)

where τ 2 = σ2/λ and λ ≥ 0 the classical smooth parameter that minimizesPn
i=1(yi − f (xi ))2 + λ

R
(f ′′(x))2dx

Priors on variance components
Hastie (1990,2000) suggested to use proper inverse gamma priors
σ2 ∼ IG(aσ, bσ) and τ 2 ∼ IG(a, b).
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[process|parameters] = smoothing splines

Splines and BHM, Kimeldorf and Wahba (1970) and Wahba (1978)

f|τ 2
0 ∼ Nn(0, τ 2

0K−) and gj |τ 2
j ∼ Nn(0, τ 2

j K−), for all j = 1, . . . , p.
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Parameters layer (priors) := [parameters] =??

Variables changes

φj =
σ2

τ 2
j + σ2

, for all j = 0, . . . , p.

If φj takes a value near one, then it means that the curve is very smooth.

Identifiability issues

if all gj proportional to f, it is impossible to distinguish f from gj

the function f constrained to have a zero mean and unit variance
(dimensionless)
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Parameters layer (priors) := [parameters] =??

Variables changes

φj =
σ2

τ 2
j + σ2

, for all j = 0, . . . , p.

If φj takes a value near one, then it means that the curve is very smooth.

Identifiability issues

if all gj proportional to f, it is impossible to distinguish f from gj

the function f constrained to have a zero mean and unit variance
(dimensionless)
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Parameters layer (priors) := [parameters] =??

“Environmental information”

the individual age effect function gj should be very smooth because
individual tree growth is a rather slow and cumulative process (Fang,
2010).

the hidden signal shared by all trees f should capture environmental
variabilities that correspond to rapid (yearly or decadal) or slow
(centennial) changes.

Prior constraints
the frequency range of gj is assumed to be much narrower than the one of f.
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Parameters layer (priors) := [parameters] = φj ∼ Beta(1, 1)
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Posteriors computations

Explicitly posterior distribution (Hastie, 2000)

f|g, λ0Y, σ2 ∼ Nn(B(BT RB + λ0Ω)−1BT s, σ2B(BT RB + λ0Ω)−1B)

with

s =

pX
j=1

(yj − gj ), λ0 = φ0/(1− φ0), R =

pX
j=1

I

and

gj |, f, λjyj , σ
2 ∼ Nn(B(BT B + λjΩ)−1BT d, σ2B(BT B + λjΩ)−1B)

with d = yj − f and λj = φj/(1− φj ). It is also possible to show that σ2 have
an inverse gamma posterior distribution.

Gibbs and MH sampler
The parameters φ0 and φj don’t have standard posterior distributions so we
use Metropolis-Hasting algorithm to estimate them.
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Simulations : finding f and gj from the yj ’s (low panel)
co

m
m

on
 s

ig
na

l
−2

−1
0

1
in

di
vi

du
al

 s
ig

na
l

−2
−1

0
1

2
3

time

si
m

ul
at

ed
 tr

ee
−r

in
g

0 10 20 30 40 50

−4
−2

0
2

4



Motivation Basics CH4 and N20 KF ellip Dendro Conclusion

Simulations posteriors
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Simulations posteriors (noise variance 0.1 (top) and 0.5 (bottom))
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The seventeen tree ring width logarithms
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The seventeen tree ring width logarithms
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Take-home messages from this dendro example

Positive points
Outputs are probability distribution (i.e., easy to compute CI)

Extract signal distribution is independently found from covariates like
precip or temperatures

Possibility to include more dynamical equations

Package in R (upon request)

Drawbacks
Only one site but a bigger set is under study

Choice of the priors important (but is this a minus ?)
A few references

Guin O., Naveau P. and Boreux J.J. (2012). Extracting a common signal in tree
ring widths with a semi-parametric Bayesian hierarchical model (in revision).

Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003). Bayesian Data Analysis,
2nd ed. Chapman & Hall.

Hooten M.B. and Wikle C.K. (2007). Shifts in the spatio-temporal growth
dynamics of shortleaf pine. Environmental and Ecological Statistics. 14 :3.



Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.
Sir Gilbert T. Walker
(Walker, 1927b, page 321)

CONNECTION BETWEEN EL NIÑO AND STATISTICS 99

ily available. These equations still are popular (e.g.,
used in S-PLUS) for estimating partial autocorrela-
tions and, through a generalization (Whittle, 1963,
page 101), for fitting multiple AR processes.

But how many statisticians (or, for that matter, at-
mospheric scientists) are aware that the “Walker” in
both terms refers to the same individual and, more-
over, that these two appellations arose in conjunction
with the same research? The “Walker” in question is
none other than Sir Gilbert Thomas Walker (Figure 3).
While stationed in India as Director General of Obser-
vatories of that country’s meteorological department,
Walker became preoccupied with attempts to forecast
the monsoon rains, whose failure could result in wide-
spread famine (Davis, 2001). It was in the course of
this search for monsoon precursors that he identified
and named the “Southern Oscillation” (Walker, 1924).

At that time, the approach most prevalent in the
statistical analysis of weather variables was to search
for deterministic cycles through reliance on harmonic
analysis. Such cycles included those putatively as-

FIG. 3. Photograph of Sir Gilbert T. Walker (source: Royal
Society; Taylor, 1962).

sociated with sunspots, the hope being to provide a
method for long-range weather or climate forecast-
ing. Walker was quite skeptical of these attempts, es-
pecially given the lack of statistical rigor in identify-
ing any such periodicities. Eventually, he suggested the
alternative model of quasiperiodic behavior (Walker,
1925). Meanwhile, the prominent British statistician
George Udny Yule devised a second-order autoregres-
sive [AR(2)] process to demonstrate that the sunspot
time series was better modeled as a quasiperiodic phe-
nomenon than by deterministic cycles (Yule, 1927). To
determine whether the SO exhibits quasiperiodic be-
havior, Walker was compelled to extend Yule’s work
to a general pth-order autoregressive [AR(p)] process
(Walker, 1931).

The focus of the present paper is on the connec-
tion between the meteorological and statistical aspects
of Walker’s research. First some background about
Walker’s research on what he called “world weather”
is provided. Then the development of the Yule–Walker
equations is treated, including a reanalysis of the in-
dex of the SO originally modeled by Walker. Reaction
to his research, contemporaneously and in subsequent
years and both in meteorology and in statistics, is char-
acterized. For historical perspective, the present state
of stochastic and dynamic modeling of the SO is briefly
reviewed, examining the extent to which his work has
stood the test of time. Finally, the question of why his
work was so successful is considered in the discus-
sion section. For a more formal, scholarly treatment of
Walker’s work, in particular, or of the ENSO phenom-
enon, in general, see Diaz and Markgraf (1992, 2000)
and Philander (1990) (in addition to the references on
ENSO already cited in this section).

2. WALKER’S RESEARCH ON WORLD WEATHER

2.1 Training and Career

In grammar school, Sir Gilbert Thomas Walker, who
lived from 1868 to 1958, “showed an early interest in
arithmetic and mechanics” (Taylor, 1962, page 167).
After being educated under a mathematical scholar-
ship at Trinity College, University of Cambridge, he
remained there, assuming an academic career as Fel-
low of Trinity and Lecturer. Walker was a “mathemati-
cian to his finger-tips” (Simpson, 1959, page 67) and
was elected Fellow of the Royal Society in 1904 on the
strength of his research in pure and applied mathemat-
ics, including “original work in dynamics and electro-
magnetism before ever he turned his thoughts to me-
teorology” (Normand, 1958). Among his first papers
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Kalman filters : bringing the GPD
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Kalman filters and elliptical distributions
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Generalization : Elliptical model

Elliptical innovations �t = (Xt − FXt−1|xt−1) and
νt = (Yt − GXt |xt) with

�t ∼ E
�
0, Σ�, g �

t,xt−1

�

νt ∼ E
�
0, Σν , gν

t,xt

�

Finite time process : t ∈ {0 : T}
Elliptical global vector

W =
�
X �

0, X
�
1 . . . X �

T , Y �
1 . . . Y �

T

��

∼ EnT+p

�
0, ΣW , gW

�

Result : Equations for estimates x̂t and Σ̂Xt are similar to
those of the gaussian filter. Additional equations for
conditional generators.

Anne Sabourin Elliptical Kalman Filter



Comparing “one-fits-all” with the 17 gj
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