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Pierre Simon Laplace’s view on D&A

“If an event can be produced
by a number of n different
causes, then the probabilities
of the causes given the event
... are equal to the probability
of the event given that cause,
divided by the sum of all the
probabilities of the event
given each of the causes.”

(1749-1827)



Pierre Simon Laplace (1749-1827)

“If an event can be produced

by a number of n different

causes, then the probabilities

of the causes given the event P(causej|event) =
... are equal to the probability
of the event given that cause,
divided by the sum of all the
probabilities of the event
given each of the causes.”

P(event|cause;) x P(cause;)
27:1 P(event|cause;) x P(cause;)
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Why was it hard to leave the Deutschmark ?

The assumption of normality is very prevalent in the theoretical and
applied statistical research

Asymptotic justification : Central Limit Theorem
Nice properties of Gaussian vectors

Completely characterized by its first two moments
Stability under linearity

Stability under summation

Stability under conditioning



Bayesian Kalman filter (Meinhold and Singpurwalla, 1983)

Observation equation
Y: = FX:+ Vi with V; ~ N[0, V]

State equation
Xt = GXi—1 + Wy with W ~ N[0, W]

Conditional distribution of X; given Y ;

If we assume R
[Xi=1|Y1q-1] ~ N [qu,):rq]
then .
XilYed ~ N [%, 4]
with

X =GXi_1+ RF'(V+FRF) 'eand =, = R — RiF"(V + FRF) ™' FR,

where Ry = GX;_1G” + W and & = Y; — FGX;_1.
1
1. Brockwell and Davis, 2002 (chap 8) and 1991 (chap 12), Meinhold and Singpurwalla, (1983)
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Three examples

Filtering
daily max




CHy and Np0

Daily maxima of methane and nitrous oxide at LSCE

m Joint work with Gwladys Toulemonde and Armelle Guillou



CHy and Np0

Figure 1: Daily maxima of CH4 and NyO during the period 2002-2007. Measurements in
parts per billion by volume (ppbv) were made at LSCE, a laboratory located at Gif-sur-
Yvette, a city south west of Paris, France. Data are missing during a few time lags and



CHy and Np0
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Figure 2: Scatterplot between daily maxima concentrations of CHy (x-axis) and N,O
(y-axis), see Figure 1.



CHy and Np0

Gumbel

CDF
F(x) = exp(—exp(—(x — p)/0o)) for all real x.



CHy and Np0

Daily maxima of CHy Daily maxima of NyO
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Figure 3: QQ-plots of daily maxima of CHy and N,yO obtained after fitting a Gumbel
distribution via a method-of-moment technique proposed in Toulemonde et al. (2010). In
(1), daily maxima of methane have estimates with 95% confidence intervals: 6 = 79.8 €
[73.3;86.4], i = 1915.9 € [1904.4;1927.4], and, for nitrous oxide, 6 = 1.52 € [1.39;1.64],
i = 320.0 € [319.7;320.2]. The x-axis and y-axis represent the observed and expected
ranked values.



CHy and Np0
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Figure 4: Scatter plots of consecutive maxima of CHy and N2O. The x-axis corresponds
to day t and the y-axis to day ¢t + 1. The empirical estimate of the lag 1 autocorrelation
is equal to 0.55 for the CHy and to 0.52 for the N,O.



CHy and Np0

The problems at hand

| The Scientific Problem Under Study |
m How to reconstruct missing maxima from one of each time series ?
’The statistical Problem Under Study‘

m How to make on-line forecasts with Gumbel distributed random
variables ?



CHy and Np0

Gumbel(p1 + p2,0/a) = p2 + olog S + Gumbel(u1, o)

where Gumbel(u1,0) denotes a Gumbel r.v. which is independent of S that is a
positive a-stable r.v. (o € (0,1]) with Laplace transform

E(exp(—uS)) = exp(—u®), for all u > 0.

e A random variable S is said to be («)-stable if and only if for all k£ > 1 there
exist ¢ > 0 and dj such that S; + ...+ Sk 2 ckS + di, where S1,55... are iid
copies of S.

e Examples and special cases where one can write down explicit expressions for
the density : Gaussian, Cauchy, Levy distributions.



CHy and Np0

Another state-space Gumbel maxima model

PROPOSED MODEL: Let {Z;,t € Z} and {Y;,t € Z} be two stochastic processes
defined as follows

Yi=vi + HiZ + 1)t s (observational equation) 3)
Zy=o1Zy1 + €ty (state equation)
where Hy > 0, oy € (0,1), ag € (0,1) and the sequences {a, }+ and {na,}¢ correspond
to two independent samples of Exponential-Stable variable, ExpS (a1, —oy(1 — ay), a10)
and ExpS (oo, —Hiov(1/ay — 1), Hio), respectively. The variable €4, is independent of
{Zy}r<i—1 and the variable 1, is independent of {Zy}v<i. The scalar v is the Euler’s

constant.



CHy and Np0

Properties
Margins
the variables Z; and Y; are Gumbel distributed with parameters (—vo, o) and
(Vi - H;’;Uv o,lz)

Covariances

Cov(Zi, Zin) = al"Var(Zy),
Cov(Yi, Zt) = HiVar(Z),
Cor(Yi,Zt) = az



CHy and Np0

Filtering

Yy

1
Z,_ Y; B pre@)ﬁon Z Y; 3 carlct)ion 7 Y
P(Zr-1]Y1:k 1)P(Zklzk—1)p( k| Y1k-1) it p(Z5|Y1:k)

P(Zk|Y1:k-1) = /p(Zk|Zk—1)p(Zk—1|Y1;k_1)de_1 (Prediction step)

p(Ye| Zk)p(Zk|Yi:k—1) .
Ze|Yi) = Correction ste
P2k k) = | 2o (2 Yok 1) 0 ( P)




CHy and Np0

Particle filtering

At time t =g

1:N uid
ft? N’V ngt,o)
wt('] — N

At time to < k< T,

1) Selection step
B — w1 P(Yil&x—1)
U — resample(Bi?,1: N)

2) Propagation
& ~p(Xklg]_ ) fori=1,.,N

3) Computation of the weights fori=1,..., N

wi — PORIEL)
L — = 3
p(Yil€,_y)
i
wh — =k

25\7:1 wj,



CHy and Np0

Particle filtering, a few references (source Olivier Cappé)

Doucet, A., De Freitas, N. and Gordon, N. (eds.) (2001) Sequential
Monte Carlo Methods in Practice. Springer.

Ristic, B., Arulampalam, M. and Gordon, A. (2004) Beyond Kalman
Filters: Particle Filters for Target Tracking. Artech House.

Cappé, 0., Moulines, E. and Rydén, T. (2005) Inference in Hidden
Markov Models. Springer.

Doucet, A., Godsill, S. and Andrieu, C. (2000) On sequential Monte-Carlc
sampling methods for Bayesian filtering. Stat. Comput., 10, 197-208.
Arulampalam, M., Maskell, S., Gordon, N. and Clapp, T. (2002) A
tutorial on particle filters for on line non-linear/non-Gaussian Bayesian
tracking. |IEEE Trans. Signal Process., 50, 241-254.

Cappé, O., Godsill, S. J. and Moulines, E. (2007) An overview of existing
methods and recent advances in sequential Monte Carlo, IEEE Proc., 95,
899-924.



CHy and Np0

Particle Filtering

Weight particles for our Gumbel model (reducing the computational

cost)
; 1 n—0C
pWléi—1) = %futmﬂz ( Hio >
where
Ut,omaz = Qg lOg St’a1 + |Og St.,ozg
and

C = UVt — HI’Y

+ Haryo + Hanér_q



CHy and Np0

Comparing MSE for different methods

KF BF500 APF—PS500 APF—Opt500
a; =0.1and ap =04 | 1.354 | 1.317 1.317 1.314
ap =0.1and ap = 0.6 | 1.036 | 1.017 1.096 1.013
a3 =0.5and ap =04 | 1.336 | 1.296 1.233 1.222
ap =0.5and ap = 0.6 | 0.994 | 0.959 0.905 0.841
ap =09 and ap =04 | 0.984 | 0.873 0.764 0.764
a; = 0.9 and ap, = 0.6 | 0.665 | 0.569 0.434 0.434

Table 1: Mean of the MSEs based on 100 replica.



CHy and Np0

Missing two weeks out of three months

MSEs for return levels based on 100 replica for oy = 0.5 and o> = 0.6

with 500 particles.

Return period || Incomplete data | APF-PSy | APF-Opty | Whole data
1 year (5.9) 0.77 0.65 0.62 0.61
5 year (7.5) 1.16 0.99 0.95 0.92
10 year (8.2) 1.35 1.16 1.11 1.08
50 year (9.8) 1.84 1.61 1.54 1.48




CHy and Np0

Conclusions about Gumbel state-space model

m Estimating hidden Gumbel distributed maxima is possible by using
particle filtering techniques

m Optimizing the weights improves the MSE
m Very much tailored to Gumbel distributed maxima
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KF ellip

Elliptical distributions, GP tailed and Kalman filtering

m Joint work with Anne Sabourin



KF ellip

Elliptical distributions

A wide class, allowing for bounded or heavy tailed laws.
A random vector : X € R" with density f is elliptical with

@ Parameters : € R", ¥ € Mpxn(R) a positive definite
symmetric matrix

o Density generator g such that f0+°° "2 g(t)dt < oo,
iff

F(x) = cal £ 7H28((x = W)E7H(x = ),

[(n/2)
Gy = —
7T"/2 fO t”/zflg(t)dt

Gaussian vectors : a specific case of elliptical vectors with
S

s
generator g(s) = exp(—3) (see e.g[5] or [7] )



KF ellip

Elliptical distributions

Any elliptical vector can be written as :
X =pu+ RAU

where
@ U € R" is uniformly distributed on the unit sphere
@ A€ Mpxn(R) is such that AA=X%
@ R (called the radial variable) is a positive real random
variable, independent from U and with density

2

n—1 2

h(r) =

An easy way to simulate elliptical distributions. see e.g [5] or [7]



KF ellip

Notations for conditioning

Crucial for filtering data'!

X1
X2
Corresponding blocks for ¢ and X

M1 11 X1
= , Y =
: ( 2 ) ( 11 o )

Leth( ),XleRP,XQER”_P

see [5]



KF ellip

Margins, still elliptical

X1 ~ Ep(pa, T11, 81))
with
400 np_4
g)(s) = oW g(s + w)dw



KF ellip

Conditioning, still elliptical

Xo| (X1 = x1) ~ En—p(21, T2p1, 82)1)
with :

pon = g2+ ¥y (X — )
Sop = Yoo — XY

g(s) = glar+s),q= (X1~ p1) T (X — pn)

Same equations as for conditionals from Gaussian laws!



KF ellip

Thresholding : the Generalized Pareto Distribution (GPD)

—1/¢
P{Y—u>y|Y>u} = <1 + i—y>

v/ +

Vilfredo Pareto : 1848-1923

? Born in France and trained as an
‘ engineer in ltaly, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or "Pareto’s Law”), as
a model for how income or wealth
is distributed across society.




KF ellip

GPD : “From Bounded to Heavy tails”




KF ellip

Elliptical Generator = the Generalized Pareto Tail

Goc(s) =P{Y > s} = (1 N 7) /¢



KF ellip

Elliptical distributions and Pareto generator

Fundamental property

8oc(s + u) = oteu(s)gs (1)

A key to obtain explicit expressions for conditional and margins



KF ellip

Pareto versus exponential generators
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KF ellip

AR(1) Xt = FXi—1 + &

Elliptical innovations €; = (Xt — FXt—1|x¢—1) have GPD generator

with parameters :

o+ &qt-1(xe—1)
1—af ’ 1—af

o=

Note : g¢—1 (xe—1) is as in (5)
Upper bound for {1 &ayp = %



KF ellip

AR(1) Xt = FXt—1 +«

H:(R) = pbeta

)
3.t \ 0 + &(qe_1(x—1) + R?)

He (o) = \/ G+ ot 200

where




KF ellip

AR(1) Xt = FXi—1 + &

Elliptical and Gaussian AR(1) model

o .

< —— elliptical
—— gaussian

o

A

o

o

<

|

o

?

0 20 40 60 80 100

Xi =0.0187 ; sigma= 0.1869 max eigen value for noise = 4



KF ellip

Kalman filters and elliptical distributions

block matrices in ¥V

Yx, = Y.+ FIx ,F
Yx.x_, = FIx._,
Yv,x._, = GFYx_,

Yy, = GIx G +%,
Yvive, = GFFI |




KF ellip

Kalman filters and elliptical distributions

Generators

W +oo nT+p—n_1 W
g (s) = w2 g (s w A ge(xt))
0

+o0
gi(s) = / w2 LW (5 4wt g (xe-1))
0

with ge(xc) = x¢(Xx,) " xe



KF ellip

Kalman filters : bringing the GPD

Choose g (s) = g, ¢(s) as a global generator for W.

Upper bound for § : &up = TP

Lemma

Elliptical innovations €; = (X; — FX¢_1|x¢—1) and
ve = (Y: — GX¢|x¢) have GPD generator with parameters :

e _ o+&€qr—1(xe—1) € __ €
o= 1—acg 5 T 1-afg
gV = o +€qt(xt) éfl/ _ §
- 1-a¥¢ T 1-a¥é€
with af = ”T{p, oV = —"TJEP*"



KF ellip

Simulations

FiGure 4.1. £ > 0, extreme radial quantile

Elliptical statespace model, GP generator, gaussian and GP estimates
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KF ellip

Simulations
FIGURE 4.3. £ <0
Elliptical statespace model, GP generator, gaussian and GP estimates
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KF ellip

Conclusions about Elliptical KF

m Elliptical distributions with GPD generators provide explicit KF equations
m [t can handle bounded, Gaussian and heavy tails
m Restricted to finite times series
m Looking for applications with symmetrical distributions
|7] E. Gomez, M.A. Gomez-Villegas, and J.M. Marin. Continuous elliptical and
exponential power linear dynamic models. Journal of Multivariate Analysis,
83(1):22 36, 2002.

[8] E. Gomez, M.A. Gomez-Villegas, and J.M. Marin. A survey on continuous
elliptical vector distributions. Rev. Mat. Complut, 16:345-361, 2003.



Three examples

Filtering
daily max

Elliptical

> S Smoothing
Kalman filtering

Tree-rings



Dendro : an attempt to leave the linear world ?

Dendro

Tree-Ring
patterns




Seventeen Pinus halepensis Mill tree ring width logarithms from the “Rognac” site
(1867 — 1993)
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The problems at hand

’ The Scientific Problem Under Study ‘
m How to extract a common signal among 17 tree ring widths ?
’The statistical Problem Under Study‘

m How to calculate the posterior distribution of a common signal ?



Similar BHM approaches

Hooten and Wikle, 2007

a BHM for the spatio-temporal growth dynamics of shortleaf pine but with
chronology indices. They linked these chronologies with drought information
like the Palmer Drought Severity Index.

Haslett, 2005

investigated the problem of reconstructing prehistoric climates from lake
sediment cores.



The “linear aggregate model” (Cook 1990, Buckley 2009)

A log-additive model

log(ring width) = F + Gt + D: 4+ unexplained variability
where
m t=year
m G; the age-related trend due to normal physiological aging processes
m F; to the climatically-related environmental signal

m D;(= 0) to disturbance factors, either within the forest stand or outside of
it (e.g., insect outbreaks or fires).



Simulations : finding f and g; from the y;’s (low panel)
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Our main assumptions

log(ring width) = F¢ 4+ Gt + 0 + unexplained variability

Notations
By = (yi(t), ..., ¥;(tn))" = log(ring width) produced by tree j
m f=(f(t),...,f(t))" = the hidden common signal,
m g = (gi(t),...,g(t))" = individual age effect for tree j

® unexplained variability = a zero mean Gaussian vector with covariance
2
g In



Hierarchical Bayesian Model with three layers

[process, parameters|data] o [data|process, parameters]
x [process|parameters]
x [parameters]



Hierarchical Bayesian layers

Important statistical modeling questions
A) Data layer := [data|process, parameters]=

yj|gj7f7 0'2 ~ g +f+ Uan(on,ln)

B) Process layer := [process|parameters] =77
C) Parameters layer (priors) := [parameters] =77



[process|parameters] = smoothing splines

Splines and BHM, Kimeldorf and Wahba (1970) and Wahba (1978)
y = f+ 02N/(0, 1) with improper Gaussian prior for the trend f
|72 ~ N(0,7°K™)
where 72 = (72/)\ and A\ > 0 the classical smooth parameter that minimizes

S (v = FOa))? + A (7 (x))?dx

Priors on variance components

Hastie (1990,2000) suggested to use proper inverse gamma priors
0?2 ~1G(a-, b,) and 72 ~ IG(a, b).



[process|parameters] = smoothing splines

Splines and BHM, Kimeldorf and Wahba (1970) and Wahba (1978)

f|75 ~ Na(0, 75K ™) and g;|77 ~ Nn(0, 72K ™), forall j=1,...,p.



Parameters layer (priors) := [parameters| =77

Variables changes

2
g .
= ———, forallj=0,...,p.
¢] 7_/2 + 0_2 j p
If ¢; takes a value near one, then it means that the curve is very smooth.



Parameters layer (priors) := [parameters| =77

Variables changes

2
g .
= ———, forallj=0,...,p.
¢] 7_/2 + 0_2 j p
If ¢; takes a value near one, then it means that the curve is very smooth.

Identifiability issues

m if all g; proportional to f, it is impossible to distinguish f from g;

m the function f constrained to have a zero mean and unit variance
(dimensionless)



Parameters layer (priors) := [parameters| =77

“Environmental information”

m the individual age effect function g; should be very smooth because
individual tree growth is a rather slow and cumulative process (Fang,
2010).

m the hidden signal shared by all trees f should capture environmental
variabilities that correspond to rapid (yearly or decadal) or slow
(centennial) changes.

Prior constraints
the frequency range of g; is assumed to be much narrower than the one of f.



Parameters layer (priors) := [parameters| = ¢, ~ Beta(1,1)

do d;
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Posteriors computations

Explicitly posterior distribution (Hastie, 2000)

f|g, AoY, 02 ~ Na(B(B'RB + 1Q) 'B’s, s°B(B'RB + 1) 'B)
with
p p
=> (Vi—9), do=co/(1 =), R=) I
J=1 j=1
and
gjl, f, \jyj, 0> ~ Nx(B(B'B + \,2) " 'B'd, 0°B(B'B + \,Q) 'B)
withd =y; — fand \; = ¢;/(1 — ¢;). It is also possible to show that o* have

an inverse gamma posterior distribution.

Gibbs and MH sampler

The parameters ¢o and ¢; don’t have standard posterior distributions so we
use Metropolis-Hasting algorithm to estimate them.



Simulations : finding f and g; from the y;’s (low panel)

common signal

|
<

~

.
~

N

<

-2
’

individual signal

simulated tree-ring
-2

time



Dendro

Simulations posteriors
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Dendro

Simulations posteriors (noise variance 0.1 (top) and 0.5 (bottom))
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Dendro

The seventeen tree ring width logarithms
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The seventeen tree ring width logarithms
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Take-home messages from this dendro example

Positive points
m Outputs are probability distribution (i.e., easy to compute Cl)
m Extract signal distribution is independently found from covariates like
precip or temperatures
m Possibility to include more dynamical equations
m Package in R (upon request)
Drawbacks
m Only one site but a bigger set is under study
m Choice of the priors important (but is this a minus ?)
A few references
m Guin O., Naveau P. and Boreux J.J. (2012). Extracting a common signal in tree
ring widths with a semi-parametric Bayesian hierarchical model (in revision).
m Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2003). Bayesian Data Analysis,
2nd ed. Chapman & Hall.

m Hooten M.B. and Wikle C.K. (2007). Shifts in the spatio-temporal growth
dynamics of shortleaf pine. Environmental and Ecological Statistics. 14 :3.



Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.

Sir Gilbert T. Walker
(Walker, 1927b, page 321)
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Kalman filters : bringing the GPD

Proposition 4.13. Inverse conditional uni variate cdf’s for centered conditional
variables ((Xz,i\ylzt,) — pfjrl> are:

For £ >0
515 x, (i) qbetai % l(2u 1) )
— : ifu> =
F);,l,\yl f(u) = 13 17qbcta%%7é(2u 1) fu > 3
71 . . l
7FX{<L‘?/l:f(1 o u> Zf u < 3
For £ <0:
Gt x, [id] b ) L
1 I=Xelil g ()fa17$+1(2u71) ifu>3
FX! [y1 z(u) = —& 137
i |yt » / n )
7FXt:zIy1:z(1 —u) ifu< s




Kalman filters and elliptical distributions

e Elliptical innovations €; = (X; — FX:—1|xt—1) and
Ve = (Yt‘ - GXt|Xt) with
@ ~ (0.6, ,)
Vi ~ 5 (O,Zy,géj’xt)

@ Finite time process : t € {0: T}
o Elliptical global vector

W o= (X,X{.. XY vy
~ 5nT+p <07 ZWagW>

@ Result : Equations for estimates X; and ixt are similar to
those of the gaussian filter. Additional equations for
conditional generators.



Comparing “one-fits-all” with the 17 g;
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