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Physics in climate models

Physics and small-scale dy-

namical processes in climate

models have to be repre-

sented by parameterizations:

Convection, planetary bound-

ary layer, radiation, turbu-

lence, gravity waves, land

surface-atmosphere interac-

tions, etc.

There are a large number of

unknown parameters in the

physical parameterizations.

From Latif



Representing “nature” with a two scale model

Two scale ’nature’ model. Large-scale equation,

d

dt
x
T
L +ML(x

T
L) +MLS(x

T
L,x

T
S ) = 0

where x
T
L large-scale true model state, ML large-scale model, MLS interaction

model between large and small scales.

Small-scale variable equation

d

dt
x
T
S +MS(x

T
S ) +MSL(x

T
S ,x

T
L) = 0 Unknown in the fore-

cast model

where x
T
S small-scale true model state, MS small-scale model, MSL interaction

model between small and large scales.



Subgrid parameterization

The forecast model evolution only represents the large scale variables:

d

dt
x
f
L +ML(x

f
L) = f(t,xf

L)

where x
f
L is the forecast state. ML is assumed to be “perfect”.

The forcing term is represented through a subgrid parameterization:

f(t,xf
L) = Parameterization(t,xf

L, {ai})

The parameterization should represent the interaction term −MLS(xL,xS)

where xS is unknown for the forecast model.

The two-scale separation hypothesis is intrinsic to the sugrid parameterization

concept.



Can we improve a climate model using observational information?

Large number of free parameters in climate models

→ Observational information can be used to constrain or estimate model

parameter values. Ruiz et al. JMSJ 2012.

Some of the current parameterizations have difficulties to represent the observed

variability (e.g. Shutts QJ 2015).

→ Observed variability can be used to build stochastic parameterizations.

There are still further limitations in the parameterizations.

→ A further step is to improve parameterizations using observations.

Can we determine functional dependencies of the parameterizations to the model

state using observations?



Climate sensitivity = parameter sensitivity?

Dots represent different

entrainment parameter

values (three colors) and

initial conditions.

From Stainforth, et al. Na-

ture, 2005.

climateprediction.net

RMSE of climate simulations as a function of the response of the mean global surface

temperature produced by a doubling of CO2.

Parameter values may have a large impact, however (long term) RMSE values are similar.

Which is better?



Climate vs forecast errors

Finding the source of a systematic error in climate simulations is difficult because

feedbacks and compensating errors.

The large-scale state remains close to observations only in the first few days of

forecasts.

The errors are likely the results of parameterization errors associated with fast

physics instead of slowly evolving feedbacks.

Short-term errors are more easily tracked towards their sources (e.g.

Pulido and Thuburn, QJ 2005; Rodwell and Palmer, QJ 2007)

Data assimilation cycles are ideal to identify sources of model error.



Forcing estimation with data assimilation

From Pulido, JAS, 2014

Instead of estimating x with data assimilation we estimate f or (x, f). 4-D

variational data assimilation or an Ensemble Kalman filter may be used.

Large number of assumptions: Error dominated by a single parameterization.

Observations are spatio-temporally dense (to constrain f ). Forcing is constant in

the ass cycle.



Model bias in the stratosphere

Eyring, et al. JGR, 2006.

Climate-Chemistry

model assesment.

Butchard et al. JGR,

2011.

Analysis in black

(ERA40, NCEP, UKMO).

Most of the models have a two-week delay in the polar vortex breakdown compared to

observations.



Delay in the polar vortex breakdown in the models

The candidate for the delay is the gravity wave parameterization.

Why is so difficult to manually find good gravity wave parameters?



Resolved-Parameterization Interactions

Time series at 2hPa.

Experiments in which

we increase and de-

crease the momen-

tum flux parameter.

From Scheffler and

Pulido JAS 2015.



Resolved-Parameterization Interactions

Changes in the parameters are compensated by the resolved scale dynamics. Changes

in the resolved scale dynamics are compensated by the parameterization.

Mechanism: gravity wave-planetary wave interactions through mean flow changes

(Cohen et al. JAS 2013, JAS 2014) .



Estimated forcing with 4D-Var data assimilation

Can data assimilation do a better job instead of manually tuning? Does DA account for

resolved-parameterization interactions?

Forcing estimated with 4D-Var. Forcing given by the parameterization. Forcing estimated

with optimal parameters.

Off-line estimation of the gravity wave parameters using a genetic algorithm (see Pulido

et al. QJ 2012).



Final warming date

See Scheffler’s Poster for more details.



Limitations in the parameterization.

Should the parameteri-

zation be switched off?

Some aspects of the estimated forcing can not be reproduced by the parameterization.

Can we go further?



Using EnKF to estimate the forcing in a “toy” model

Nature state: Lorenz 96 two scale model.

Forecast state: Lorenz 96 one scale model (only large-scale variables).

Since small-scale motions are not modeled, f is unknown. We want to

estimate the f term using data assimilation.

This requires only the modelling and observations of large-scale variables

xL.

Two metodologies:

Offline estimation. Apart from the state variables, the forcing variables are

included in the state to be estimated (Augmented state). Having the pairs

xa
n, f

a
n for each time, offline linear regression gives the polynomial function

that best fits them.

Online estimation. we assume a priori the forcing is a polynomial function

and the polynomial coefficients are augmented to the state.



Assimilation details

• The LETKF algorithm is used (Hunt et al. 2007).

• Persistence model for the forcing and parameters:

f
f (t+ 1) = f

a(t), af (t+ 1) = a
a(t)

• All large-scale variables are observed at each cycle.

• No localization is used (some experiments were conducted with

localization, a low impact was found for an N = 8 and K = 30

experiment).

• Adaptive independent inflation factors for the model variables and the

forcing variables (Miyoshi, MWR, 2009).



Results off-line. Analysis state

Evolution of the analysis state (xa
1), observations (xo

1) and forecast state (x
f
1 ) from

day 1000 to 1025 for case (a) F = 6, (b) F = 10, and (c) F = 16.



Results off-line. Estimated forcing

Evolution of the estimated forcing (F a
1 ), and the true forcing (F T

1 ) from day 1000 to

1025 for case (a) F = 6, (b) F = 10, and (c) F = 16.

Systematic lag between the true and estimated forcing.



Is the X-F relationship accurate?

Scatterplot of the true small-scale forcing as a function of the true state, and of the

estimated forcing. Points with
dX
dt

< 0 are represented in gray.



Impact of the inflation factor

Two fixed inflation factors (one for the model state, and one for the forcing) may

reduce time lag to the expenses of noise.

Typical “good” inflation factors: 1.05 for the model state, 1.5-2.2 for the forcing.



X-F scatterplot

Scatterplot for the experiment with adaptive inflation factors, and for the one with

fixed inflation factors.



Scatterplots on-line linear estimation

Scatterplot of the true small-scale forcing as a function of the true state, and of the

online linear estimation as a function of the estimated state.



On-line estimation. Quadratic forcing

Evolution of the estimated forcing (F a
1 ) for the quadratic online estimation, and the

true forcing (F T
1 ) from day 1000 to 1025 for case (a) F = 6, (b) F = 10, and (c)

F = 16.

Great job in the peaks. Variability of the small-forcing is not well captured.



Scatterplots on-line quadratic estimation

Scatterplot of the true small-scale forcing as a function of the true state, and of the

online quadratic estimation as a function of estimated state.



Mean polynomial coefficients

Coef/Case F = 6 F = 10 F = 16

F
off

F
on

F
off

F
on

F
off

F
on

a0 5 9 0.1 3 0.9 3

a1 18 32 11 13 21 12

a2 26 47 20 18 56 19

Relative error (%) in the time mean coefficients of the forcing.



Dispersion of the forcing

The dispersion of the forcing around the deterministic value

σ2(xn) =
1

I−1

∑I
i

[

fn(ti)−
∑

2
j=0 aj(xn(ti))

j
]2

may be used to set a stochastic

term in the parameterization (e.g. first order autoregression, Wilks QJ 2005).



Nonlocal dependencies of the forcing

The forcing of the small-scale variables in the TRUE model depends on the derivative

(instead of the local variable). dtX
s
i +MS(X

s
i ) + α(XL

i+1 −XL
i−1) = 0

The forcing term in the parameterization (off and online) is assumed to be:

Fn =
∑

2
i=0 ai(X

f
n+1 −X

f
n−1)

i

28



Conclusions

• Forcing estimation can be used without apriori information about the functional

dependences of the forcing.

• The inflaction factor plays a mayor role in parameter estimation. It does influence

the forcing estimation (time lag in the forcing).

• Offline estimation may be useful to determine the functional dependences of the

parameterization.

• Once the functional dependences of the forcing are known, online estimation may

give slightly better accuracy in parameter values.

• Neither the online nor the offline estimation appears to give an accurate overview of

the stochastic characteristics of the small-scale subgrid effects.


